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Abstract

Theoretical and computational investigations of boundary-plasma microturbulence which take into account important
effects of the geometry of diverted tokamaks—in particular, the effect of X-point magnetic shear and the termination
of field lines on divertor plates—are presented. We first generalize our previous ‘heuristic boundary condition’
which describes, in a lumped model, the closure of currents in the vicinity of the X-point region to encompass three
current-closure mechanisms. We then use this boundary condition to derive the dispersion relation for low-beta
flute-like modes in the divertor-leg region under the combined drives of curvature, sheath impedance and divertor tilt
effects. The results indicate the possibility of strongly growing instabilities, driven by sheath boundary conditions,
and localized in either the private or common flux region of the divertor leg depending on the radial tilt of divertor
plates. We revisit the issue of X-point effects on blobs, examining the transition from blobs terminated by X-point
shear to blobs that extend over both the main SOL and divertor legs. We find that, for a main-SOL blob, this transition
occurs without a free-acceleration period as previously thought, with X-point termination conditions applying until
the blob has expanded to reach the divertor plate. We also derive propagation speeds for divertor-leg blobs. Finally,
we present fluid simulations of the C-Mod tokamak from the BOUT edge fluid turbulence code, which show main-
SOL blob structures with similar spatial characteristics to those observed in the experiment, and also simulations
which illustrate the possibility of fluctuations confined to divertor legs.

PACS numbers: 52.35.Kt, 52.30.Ex, 52.35.Mw, 52.65.-y, 52.40.Kh

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Turbulent transport in the boundary plasma of tokamaks
plays an essential role in establishing the boundary conditions
for core-plasma transport and in establishing the pattern
of power and particle loss to bounding material surfaces.
While such transport has been the subject of theoretical,
computational and analytic studies for many years, the
description of the turbulence has been heavily shaped by
two major developments: the recognition of the role of
magnetic shear in the vicinity of the separatrix X-point and the
emergence of the importance of large-amplitude intermittent
structures or ‘blobs’.

X-point magnetic shear squeezes magnetic flux tubes,
mixing poloidal/toroidal and radial potential variations,
thereby raising the effective radial mode number of fluctuations
passing near the X-point [1]. The radial wavelength of
moderate-toroidal-mode-number perturbations can shrink to
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less than a gyroradius on passing the X-point region. Various
mechanisms—resistive current flow [2], polarization [3-5] and
viscosity [6] can lead to current closure in this region, thereby
terminating fluctuations present on one side or the other of the
X-point, and isolating instabilities in the main SOL from those
in the divertor leg. This current closure can be approximated as
a lumped boundary condition (BC); this was done for resistive
closure in [2], and for polarization in [3-5]. The effective
boundary condition can then be used to analyse the effect of
X-point shear on instabilities. This was done for curvature-
driven modes in the main SOL [7] and for sheath-driven modes
in the divertor leg [2].

A number of experiments (e.g. [8-11]) have observed
large-amplitude, intermittent, strongly elongated (along the
magnetic field) structures or ‘blobs’. They are of considerable
importance, since they propagate radially and can be a
significant transport mechanism to the main chamber walls.
These can be viewed as a nonlinear state of instabilities in
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the SOL. A simple model was proposed in [13]; more recent
treatments have introduced the braking effect of contact with
external walls [12, 14] and more quantitative analyses based
on the vorticity equation [14, 15].

In the past few years the interaction of the above
phenomena has come under investigation: it has been
recognized that blobs (like lower-amplitude fluctuations in the
edge) can be strongly impacted by the presence of X-point
shear, and the effects can be analysed using the ‘heuristic
boundary condition’ described above. [12] derived the terminal
velocity of an isolated blob in the main scrape-off layer contact
with the X-point region. Recently we pointed out [16,17] a
number of further consequences of X-points and wall contact
(or lack thereof) for blob dynamics.

In the present paper we extend the above lines of
investigation in several ways. First, we note that the X-point
current-closure mechanisms can be combined to a generalized
heuristic boundary condition (section 2). We then apply
(section 3) the heuristic boundary condition to the analysis of
low-p, flute-like, divertor-leg instabilities, under the combined
influence of curvature, sheath impedance and radial tilt of
divertor plates. In section 4 we gather our previously derived
results on the effect of X-point effects on blob propagation
and examine the reconnection of a main-SOL blob to the
divertor plate as it radially propagates. Also in this section
we derive results for the propagation of blobs in divertor
legs. Section 5 is devoted to numerical simulation of the
above phenomena using the BOUT two-fluid code: main-SOL
blobby structures and comparisons with experimental data for
the C-MOD tokamak, and simulations indicating the presence
of fluctuations in divertor legs uncorrelated with fluctuations
in the main SOL. Section 6 is a discussion and summary of the
results.

2. X-Point boundary conditions

As mentioned in the introduction, in a number of cases the
magnetic shearing of perturbations near the X-point is so strong
that it causes a complete decoupling of perturbations at two
sides of the X-point. In particular, perturbations in the common
flux region of the divertor get decoupled from perturbations
in the main SOL, and perturbations in the outer private-flux
region in divertor are decoupled from perturbations in the
inner region. What happens to perturbations in the transition
zone is that the cross-field current becomes non-negligible
because of a rapid increase in a perpendicular wavenumber
along the field line and the corresponding increase in a cross-
field current. The cross-field wavenumber grows, roughly, as
exp(s/L*) [1], with s being the distance along the field line
and L* being some characteristic length determined by the
details of the divertor design and being of order of a few meters
for most of the medium-size tokamaks [18]. So, a potential
perturbation of the form exp(ik, - r) imposed on the one side
of the X-point decays when one moves into the X-point region
because of the finite parallel plasma resistance. The situation
here is similar to that of the ‘leaky circuit,” where the voltage
applied between two conductors decreases with the distance
from the terminal if there is a current leak from one conductor
to another.

Figure 1. Schematic of the divertor region. Dashed lines represent
the ‘control planes’ for divertor-leg instabilities near the separatrix.
The major axis is to the left.

As arough way to describe this situation, one can impose
a resistive boundary condition at a ‘control surface’ situated
at some distance from the X-point. In particular, when one
deals with instabilities in the private-flux region, the location
of the control surfaces for the outer and inner legs are shown
in figure 1. The exact location of these surfaces is not very
important if the divertor legs are long enough, so that the SOL
width at the divertor plate is much less than the distance from
the divertor plate to the X-point. The structure of the boundary
condition at this surface is:

Ji = 8¢, )

where X is some coefficient that, generally speaking, depends
on the wavenumber and the frequency of perturbations. The
form for o depends on the assumption of the mechanism
leading to the cross-field ‘leak.’

In [2] it was noted that, when the perpendicular
wavenumber of perturbations exceeds pi’l, a cross-field
conductivity by electrons becomes possible. This leads to the
BC of the form

JiI = ouk16¢, oy = 33/47760@7 )
where k;, = |k l|. The parameter oy has the dimension
of electrical conductivity and was called in [2] a ‘heuristic
conductivity.’

In [6], a closure mechanism associated with the cross-
field ion shear viscosity was considered. It leads to the
following BC:

€
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m

(We find it convenient to express the BC in terms of the heuristic
conductivity, which allows easy comparison between various
models.)

In [3-5], closure by the ion polarization current was
considered. This yields the following BC:

. mi o]\
Ji = ouky1 8¢ (**) . “4)

e Vei

The last two mechanisms are based on the assumption that
the cross-field length-scale of the perturbation in the sheared
region remains greater than the ion gyroradius all over the
zone where the closure of the currents occurs. If, formally,
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the closure does not occur up to the point where the length-
scale becomes less than p; , then the mechanism described by
equation (2) takes over.

In the derivation of boundary conditions (2)—(4) in [2-6], a
WKB-type analysis of the modes above the control surface (for
the geometry of figure 1) was used. In this analysis the exact
location of the control surface is not important, provided the
divertor leg is long enough. This is due to the fact that the cross-
field current leak becomes significant only in the zone near the
X-point where a strong squeezing of the flux tubes begins. In
the vicinity of the control surface the parallel electric field is
small and the exact position of this surface has a very weak
effect on the evaluation of the parameter X in equation (1).

The BC for a specific set of parameters is determined
by the mechanism that yields the highest current. One can
qualitatively take this circumstance into account by introducing
a ‘generalized boundary condition’ that can be obtained simply
by summing up equations (2)—(4). The result is

1/4
mj
Ji = ouk 8¢ [1 +a (ki) (m—) ko)

€

12
mj |w|
+ (k1) (mi T) :| . ©)

The coefficients oy, o, < 1 account for the aforementioned
possibility that the length-scale reaches the ion gyroradius
before the substantial shortening of the current by a particular
mechanism occurs. The values of these coefficients depend
on the specifics of the divertor geometry. For the plasma
parameters chosen in section 3, 4 all the mechanisms yield the
same contribution to jj, to within a factor of 2-3. In order not
to overload our largely conceptual analysis by the unnecessary
details we use in section 3 and 4 simply the boundary condition
(5) with the term in square brackets replaced by a constant G,

ji = Gonlk.|5¢, (6)

with G ~ 1; this is of course just our heuristic boundary
condition (2) with an extra multiplicative factor G. This
discussion closely follows the discussion in appendix C of [5].
A new element is the inclusion of the viscous term (3).

When boundary condition (5) is applied to the
perturbations existing between the divertor plate and the
control surface, the exact location of the latter is, again,
unimportant: moving the control surface up or down by the
distance §¢4 small compared with the length £4 of the divertor
leg causes the appearance of corrections of the order of §£4/44
in the eigenfrequencies. For this approach to be valid, the
divertor legs need to be long enough, exceeding, roughly,
(aAg)'/* where a is the minor radius and A is the SOL width
in the equatorial plane [16].

3. Divertor-leg and private-flux instabilities

The plasma in the divertor is in direct contact with the
divertor plates and, therefore, may be strongly affected by
the sheath boundary conditions. In the private-flux region
there is obviously no connection with the main SOL along
magnetic-field lines. Inthe common flux region the connection
is present but may be strongly reduced by the shear near the

614

X-point. As noted in [2, 16, 19] these features can be used to
reduce the divertor heat load by exploiting various instabilities
specific to the divertor plasma so that the plasma cross-field
diffusion in the divertor legs would be maximized and lead
to a broadening of the wetted area. On the other hand, the
possibility of confining these instabilities within the divertor
leg, without inducing additional transport in the main SOL,
would eliminate any adverse effect of these instabilities on
the pedestal formation and bulk plasma confinement. This
approach generally favours divertors with ‘long legs’ and can
therefore improve performance of the X divertor [20].

In this paper we present an analysis of divertor-leg
instabilities that consistently includes curvature, X-point shear
and sheath BC; we discuss the consequences for instabilities in
the private-flux region. We use the generic divertor geometry
shown in figure 1. The angle « is considered positive when
the tilt of the divertor plate is as shown in figure 1. We assume
that the distance £4 from the X-point to the divertor plate is
~ 20cm, toroidal field By ~ 5T, poloidal field Bp ~ 0.3
electron temperature at the divertor floor 7, ~ 25eV, plasma
cross-field length-scale A ~ 1cm in the private-flux region
at the divertor plate and density n ~ 103 cm™3. These
parameters roughly correspond to those of a high-field compact
tokamak like C-Mod, although they do not reflect details of any
particular tokamak. We assume also that the plasma fills the
whole flux tube connecting the inner end outer strike points,
neglecting variation of the parameters along the flux tube.

We consider unstable modes satisfying Al <k < pi" s
where p; = c/we With ¢g = (2T,/m)'/?. The modes are
flute-like, with k| < k. For the set of parameters mentioned
above, p; ~ 0.02 cm (deuterium). An important factor is the
squeezing of the flux tubes on their way from one strike point to
the other, caused by strong shear near the X-point [1,18]. A flux
tube that is circular at one strike point and centred a distance
Ao from the separatrix ends up having a highly stretched
elliptical cross section, with ellipticity E & (£4/A)>. Hencea
perturbation with wavenumber k| at the outer strike point has a
scale length kI] E7V2~ kll Ao /€4 near the inner strike point.
If this scale-length becomes less than p;, the perturbation is
‘dissolved’ in the ambient plasma. In this case perturbations in
the two legs are disconnected and the effect of the X-point shear
can be approximated by the ‘heuristic boundary condition’
(6) on control planes situated somewhat below the X-point
(dashed lines in figure 1). Conversely, if Ag/k€q > pj, the
perturbation may connect the two strike points. Estimating
Ay ~ A/2, one finds that the disconnection occurs for
perturbations with k, p; > A/2¢4 ~ 1/40, i.e. even for
perturbations with the cross-field length-scale approaching the
plasma thickness A. Therefore, we consider only disconnected
perturbations. (We will return to the process of disconnection
in connection with our discussion of blobs in the next section.)

We apply a sheath BC at the divertor plate, with the
effects of tilt (sin # 0) and plasma drifts included, and the
heuristic BC at the control surface. We assume Te’IV T >
n~!Vn and neglect the latter. The general dispersion relation
accounting for possible finite-beta effects is derived in the
appendix. In the case of the plasma parameters mentioned
above the plasma beta is quite small and, as we will check
shortly, the perturbations have a pure flute nature. The
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Figure 2. Growth rate versus wavenumber for the private-flux
region in the outer leg, for Ly =3m, R = 0.7m, G = 2, and other
parameters as indicated in the text. At zero tilt, there is only a weak
instability. Negative tilt makes the plasma strongly unstable.

dispersion relation then looks as follows (cf. equations (A.39)
and (A.40)):

Q2+ Q>Q + 2 +iQ) —i[T—-T3-T2=0 (7)

with
2
 m . B
Ql — wc:ln;lcs, _ Wei —Ttan a,
L”kyTe kyLH Bp
Q, = Do
Bplky|L
[\ ciCs
f: wLC‘, F%::I: tan o,
kyL”A miL”A
22T, B
1'*% — iieT’
mi;RABp

with L the distance along a field line from the divertor plate to
the control surface and with the constant A =~ (1/2)(1+A) ~
4. Here G is the adjustment factor of order one that enters the
heuristic boundary condition (6), A = In(27)~!/2x the ratio
of the electron to ion thermal speed, and R is evaluated at
the strike point. The ‘plus’ (‘minus’) sign corresponds to the
private-flux region in the outer (inner) leg.

The first term in the left-hand side (lhs) of equation (7)
describes plasma inertia. The last term describes curvature
stabilization (destabilization) of perturbations: in the private-
flux region, for the outer leg, it is stabilizing, whereas for
the inner leg it is de-stabilizing. The second to the last term
describes the stabilizing/destabilizing effect the divertor-plate
tilt. In order to have stronger turbulent broadening of the
private-flux region it is desirable to have « < O(> 0) in the
outer (inner) leg. The 23 term describes the effect of the X-
point-shear boundary condition. The rest of the terms come
from the sheath boundary condition (see appendix).

The growth rate determined from equation (7) is shown
in figure 2. One sees that the tilt of the divertor plate has
a strong effect on the instability. To enhance the instability
in the outer (inner) private-flux region, the tilt has to be
negative (positive). As shown in [2], the real part of the
frequency at moderate k is of the order of the growth rate,
ie. f = ReQ/2x ~ ImQ/2x ~ 100kHz. The diffusion
coefficient evaluated by a mixing length estimate is quite high,
approaching 1.5m?s™! (i.e. significantly higher than Bohm).

Consider now the applicability conditions as described
by equations (A.41)—(A.43). Taking as representative values

ky=8cm™2and |Q| = 5 x 10°s~! (figure 2) and evaluating
the magnetic diffusivity for 7. = 25eV as D,, ~ 3 x
10*cm?s~!, one finds that condition (A.42) is satisfied.
Therefore, the validity of the pure flute approximation is
determined by condition (A.43). Using equation (A.25) and
taking Ly = 3m (as in figure 2), one finds that ¢4 =
20cm. The Alfven velocity for a deuterium plasma with
n = 10" cm™3 in a magnetic field of 5T is 2.5 x 10° cms™!.
Therefore, the lhs of equation (A.43) is ~0.1, signifying the
validity of the flute approximation.

At the nonlinear stage of the instability, one can expect
formation of blobs [13] moving away from the separatrix,
deeper into the private-flux region. This is discussed in the
next section.

4. Blobs

In the past few years it has been recognized that blobs (like
lower-amplitude fluctuations in the edge) can be strongly
impacted by the presence of X-point shear and the effects can
be analysed using the ‘heuristic boundary condition’ described
in section 2. Reference [12] derived the terminal velocity of
an isolated blob in contact with the X-point region. Recently
we pointed out [16, 17] a number of further consequences of
X-points and wall contact (or lack thereof) for blob dynamics.
Here we collect these results, and then examine two aspects that
were not explicitly treated previously: the process by which a
blob loses contact with the X-point region, and the condition
for resistive ballooning isolating a blob from the end walls.
We then consider the implications for blob propagation in C-
Mod, where some rather detailed studies of blob propagation
have been performed. Finally we discuss properties of blobs
that follow from the divertor-leg instabilities discussed in the
preceding section.
The salient results from [16, 17] are:

(1) The X-points decouple blobs and blob dynamics in the
main SOL and in the divertor legs. Blobs born close to the
separatrix in either the main SOL or the divertor leg will
be confined to that region until they have propagated out
far enough that the X-point shearing is sufficiently weak.
The terminal velocity of a blob confined to the main-SOL
region is of order

Ry ~viLyp/GRa ®)

where L, is the field line connection length (half the field
line length) to the X-point region, a is the blob radius, p is
the gyroradius and G is the order-unity phenomenological
constant in the X-point heuristic boundary condition.

(2) Divertor leg instabilities, such as discussed in section 3,
can grow into blobs localized to the divertor legs. These
move slower than main-SOL-localized blobs because of
contact with the divertor (see discussion below).

(3) If a blob is found close to the separatrix which appears
to extend all the way from the main SOL to the divertor
floor, this must be considered as a coincidental alignment
of a main-SOL and divertor-leg blob; the two will each
propagate at their own rate.

(4) when a blob has propagated sufficiently far from the
separatrix that X-point shear is insufficient to bring the
blob thickness down to the gyroradius, it ceases to be
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confined poloidally to one side or the other of the X-
point region. (We examine below just where and how this
occurs). We had argued previously that the blob would
then enter a period of acceleration while simultaneously
expanding along the magnetic field at thermal speed until
a material surface is reached, but the discussion below
indicates this period is of zero length.

(5) A blob in contact with a material surface, and for which
the pressure or density distribution within the blob cross
section is non-symmetric, experiences a conducting-wall
drive in addition to the better-known curvature drive.
These blobs are the nonlinear limit of the conducting-wall
temperature-gradient modes described in [21,22]. The
terminal velocity in the case where this drive dominates
over curvature drive (valid for AaRF,/p;L. > 1, where
A=A-1 /2 ~ 3, L. is the connection length (~ half the
field line length) and F, < 1 is a measure of the degree
of asymmetry of the pressure and density distributions)
is [17]

Rew ~ FaAcT, wai/eBa 9

(neglecting modifications, analogous to those discussed
in the preceding section, when there is a significant tilt of
the bounding surface); in the opposite limit, it is

R ~ (cTe/eBa)(psLe/Ra)(1+ T/ Te).  (10)

The question of how a blob, initially confined to the main
SOL plasma, re-establishes connection through the divertor leg
to the divertor plates, and the associated question of how far
from the separatrix the X-point is effective in isolating a blob
has not been explicitly dealt with in the previous literature. An
estimate for this ‘connection distance’ A, proceeds as follows.
We refer in this section to coordinates as defined in figure 1,
with the origin of x, y taken at the X-point. We note that, with
this choice, x > |y| denotes positions along a (hyperbolic,
xy = const) field line in the main SOL, and x < |y| denotes
positions in the divertor leg. We also note that, in the former
case, x is an approximate measure of the poloidal distance (in
the main SOL) from the vicinity of the X-point while in the
latter case | y| plays the same role in the divertor leg. Similarly,
y measures the distance normal to the flux surface from the
point to the separatrix in the main SOL while x plays the same
role in the divertor leg. That is, the approximate association of
x and y with distances within and across flux surfaces reverses
between the main SOL and the divertor leg.

As noted in [1] and in section 2, a flux tube that is
circular far above the X-point (at position xg, yo), with radius
a, is elliptically distorted to have a thickness (minor radius)
SR ~ ayo/’yc‘ at the position x¢, y. (wWhere x; = x9yo/yc). So
a flux tube will be distorted to have a specified thickness § R
at the position where | yc| = ayy/8 R, which increases linearly
with the distance y, from the separatrix. But interestingly,
the value of x at this position does not change with yy; it
is just x. = xodR/a. Putting together this result with our
observations about the roles of x and y as measures of poloidal
and cross-flux-surface distance above and below the X-point,
and defining the ‘control surface’ discussed in the preceding
sections as the point where §R has a fixed value (~ p;), we
can now infer how the poloidal position of the control surface
moves as a blob propagates radially. We see that as yy is
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increased, the control surface is almost stationary at a distance
~X. up the main-SOL leg until | yc| becomes comparable with
x¢, which, from the above estimates, occurs at a distance from
the separatrix yo ~ xo(0/a)?; once yc| exceeds x. the control
surface advances down the divertor leg approximately linearly
with increasing yo. This estimate continues to apply so long
as the poloidal field is approximately quadrupolar, i.e. up to
|yc| ~ r, the tokamak minor radius. The moving control
surface approximately determines the poloidal extent of the
radially propagating blob. For purposes of obtaining numerical
estimates, one can take xp ~ r in the above expressions.

One might be concerned that, once the control surface for
amain-SOL blob is in the divertor leg, it might recede towards
the divertor faster than the material in the blob can catch up.
However, within the context of the quadrupolar model, the
toroidal distance between the position where a flux tube is
circular with a specified radius ry and the position where it is
elliptical with minor radius p; is independent of the distance
from the separatrix, and is just Az = (Br/Bp)In(ro/pi),
where Br is the toroidal field strength and By, is the (constant)
derivative of the poloidal magnetic field with respect to
distance from the X-point. Hence as a blob propagates
outwards, this poloidal distance does not change. As a first
approximation, one might argue that to leading order in Bp/ B,
purely transverse displacement of a flux tube segment consists
of purely poloidal motion and so preserves the toroidal length;
hence mass initially at the control surface would exactly keep
up with it, without the need for any flow along field lines. But
this is not quite correct; transverse displacement necessarily
involves some toroidal motion as well, which means that a
flux tube segment whose end is initially a gyroradius thick is
no longer a gyroradius thick after displacement. Some parallel
(to B) mass flow is required for mass to stay with the moving
control surface as a blob propagates.

To estimate the effect, consider again a flux tube with
circular cross section of radius ag at position xg, yp (Where x
is the tokamak minor radius and —yy is the SOL width). This
flux tube is squeezed to a radial extent §x ~ p; at position
& &~ yolao/pi), x¢ = xoyo/yr. (Imitially x¢, yr = xc, Yo,
the position of the control surface). Note that the flux tube
is extended in the poloidal (y) direction here, §y ~ ag / pi.
We consider a purely transverse displacement of the flux
tube which is purely in the poloidal plane at xq, yo; for
a radial displacement &,, there is a poloidal displacement
&ox ~ —&0yB,/Bx = &yyy0/Xo, and by construction zero
toroidal displacement. We look for the point on the displaced
field line which is reached by a purely transverse (to B)
displacement from the point x¢, yf, z¢, That is, & - B = 0,
from which it follows that &, = (Bp/Br)(xt&x — yr&ry). Just
as the shear results in the flux tube being elongated in the y
direction, the displacement &, is enhanced over the main-SOL
displacement &, by the same factor ~ ay/p;. Hence we find,
approximately, &, ~ —&,0Bpyi/Bryo ~ &0(Bp/Br)a/p.
Hence, as a blob moves outwards with velocity R, there must
be a parallel flow (approximately equal to the toroidal flow)
of magnitude v ~ R (Bp/Brt)(a/pi) in order to preserve Az
and so stay in contact with the receding control surface. For
typical parameters (Bp/Brt)(a/pi) ~ 1; the required parallel
flow velocity is of the same order as the blob radial expansion
velocity, which is typically well below the sound speed. So, the
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Figure 3. Blob propagation speed in C-Mod, from [9].

blob can keep up; the X-point boundary condition will continue
to apply until the control surface reaches the divertor plate. The
limit of applicability of the X-point boundary condition is then
simply given by A, ~ pf4/a. A blob propagating past this
point will transition from a terminal velocity set by X-point
shear to a terminal velocity set by contact with the divertor
plate.

Now we consider the effects of resistive ballooning. In
conjunction with blob physics, various aspects of this issue
have been discussed in [4,5, 17]. For our purpose the analysis
presented in [17] is most convenient as it explicitly describes
the dynamical evolution of the central line of the isolated
plasma filament (the isolated blob). Equations (42) and (43) of
[17] are coupled partial differential equations for the evolution
of the normal and geodesic component of displacement for a
blob derived in the approximation of resistive MHD, and are
of the form

;B0 B BpR 0 (11
Clég"'c*za |:ng <B7P'§g> + Cgn (Bp Sn)]"‘sg = (1)

and
C‘§+B28 C Bg +Chg (BpRE,) | + 80 =0, (12)
1Sn c28s nn Bpn ng P g n—VY,

where C; = [pdS, Cj, = ([0dS)D;yBp/B?, Cjy =
(f0dS)Dy;/BBpR, and S; = [2(VB);/B] [ pdS for j =
g.n, f dS denotes an integral over the cross section of the
blob, D;; = (x;x;) — {x;){x;), o is the electrical conductivity,
and the ( ) denotes a o-weighted average over the blob
cross section. The resistive-ballooning limit prevails when
the parallel derivative terms in these equations are negligible
compared with the remaining terms, from which we obtain the
following criterion:

R < Ry, = BPL/wa’o R, (13)
where o is the parallel conductivity. This criterion can also be
obtained from analysing equations (8) and (9) of [5].

We now consider application of these considerations to
C-Mod. Reference [9] contains a plot of blob velocity versus
radius for a representative discharge, reproduced here as
figure 3. A detailed analysis of experimental data regarding
blobs (including in C-Mod) has been recently published
[10]. Our study identifies additional effects, in particular:
(1) the conducting-wall drive, associated with temperature and
density non-uniformity over the cross section of a blob which
has one end is in contact with a conducting surface and (2) the
interplay between the poloidal and radial motion of a main-
SOL blob as it transitions from being terminated by X-pont

shear to making contact with divertor plates. A striking feature
of figure 3 is that, apart from the large velocity shown at the
smallest radius (which the authors regard as an instrumental
artefact), the velocity is nearly constant, and does not show
much structure. One is then led to ask how to reconcile this
with theoretical predictions of blob speeds that depend on
what surfaces the blob contacts and whether it passes close
to the X-point. Appeals to ballooning do not help: blobs in
C-Mod are observed to have radii ~1cm (see, e.g. figure 9
of [9]); hence taking B = 5T, R = 0.9m, the ballooning
criterion, equation (13), becomes R <« Ry ~ 94ms™! x
(n/5 x 1083 em=3)(L./5m)>(1 cm/a)*(T /20 ev)~'/2, which,
for the observed blob velocity from figure 3 and typical C-
Mod parameters, is not satisfied except possibly very close
to the separatrix where the field lines become very long. So
indeed we must consider where blobs end. The criterion that
they ‘end’ at the X-point control surface rather than at the
divertor plate, A < A. = pfq/a, becomes A < 0.4cm
X (T wan/10eV)(£4/20 cm). (Because of the shape of the C-
Mod divertor, €4 varies appreciably.) Thus only the left-most
data pointin figure 3 is possibly subject to the X-point boundary
condition. For all other data points the blobs are in contact with
either the horizontal leg of the divertor structure or the antenna
limiter. For C-Mod conditions with the asymmetry parameter
F, ~ 1, the criterion for dominance of conducting-wall drive
for blobs is strongly satisfied; hence for all blobs that end on a
wall (limiter or divertor), we estimate

R = Ry ~ 640ms™! x (Tpwar/10eV)(1cm/a)F,. (14)

This is of the right order of magnitude and could plausibly
be consistent with a constant blob velocity if the asymmetry
parameter F, compensates for adecrease in blob temperature as
it propagates. For ablob that terminates in the X-point shearing
region (possibly, marginally, the left-most data point), we
obtain R = R, ~ 4400ms~! x(7/20eV)(2/G)(1 cm/a);
a blob that just misses termination by X-point shearing would
instead terminate on the vertical surface of the C-Mod divertor
structure, which would also have an elevated propagation speed
because of the tilt of the surface relative to poloidal field lines.
The change in velocity between the first and second data points
in figure 3 is plausibly the slowing-down of the blob as it
transitions from ending in the X-point region or the vertical
divertor surface to terminating on the horizontal divertor or
limiter surfaces.

We return to the discussion of divertor-leg blobs, noted in
section 3. If the electron temperature in the blob is uniform, the
drive is associated with the curvature and the tilt of the divertor
plates. The contact with the conducting divertor plate partially
reduces the polarization field and gives rise to a constant-
velocity motion. The X-point ‘heuristic boundary condition’
turns out to be high resistance compared with the sheath, and
so is effectively insulating. This leads to the estimate for
the blob velocity, Ry = (p?cs/a®)[(Ly/R) £ (B/Bp) tan ],
where + (—) corresponds to the inner(outer) divertor leg in
the private-flux region, and opposite for the common flux.
If the tilt term dominates over the curvature term by O(1),
blob motion is strong enough to strongly affect transport; the
ion parallel transit time is longer than the blob propagation
time over the SOL width A even for blobs with size A for
the parameters of section 3. If the broadening is sufficient to
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Fit to scanning probe data
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Figure 4. Background profiles used for BOUT simulations of
C-Mod. Solid lines are profiles in the edge and main scrape-off
layer; dashed lines are profiles in private-flux region. The circles are
experimental data points.

result in reconnection of the inner and outer strike points in
the private-flux region, and there is enough tilt with favourable
signs at both plates, further broadening is possible. Finally,
we note a preliminary report of an observation on the MAST
spherical tokamak suggestive of the existence of a divertor-leg
blob; fast camera observations in visible light during ELM-free
periods following an L—H transition appear to show continued
presence of field-line-following filaments in the divertor region
but an absence of filaments in the main SOL [23].

5. BOUT Simulations

We present in this section simulations of edge turbulence using
the BOUT code [24], that illustrate the concepts discussed in
the preceding sections. Specifically we address simulations
of blobby turbulence in C-Mod, and present simulations
showing divertor-leg turbulence uncorrelated with main-SOL
turbulence for DIII-D.

The edge plasma in C-Mod is relatively dense (n; ~
0.5x10* m~3) and cold (T, ~ 30eV), making it a particularly
good choice for application of the collisional Braginskii-
based plasma model. A particular C-Mod shot 1031204007,
t = 740ms is modeled with the magnetic geometry based
on an EFIT reconstruction. For the profiles of background
plasma density N;p and temperature T a fit is constructed
to match the scanning Langmuir probe measurements at the
outer midplane location, with no poloidal variation. In divertor
legs the radial profile is taken symmetric with respect to the
separatrix, see figure (4). The background ion temperature,
Tio, is taken identical to Ty, and no background equilibrium
flow and no equilibrium electric potential is used. In the
calculation the toroidally average components of fluctuating
fields are subtracted out, thus keeping the toroidally average
components unchanged.

Two simulation cases are considered, one treating the
magnetic equilibrium as a lower single-null (LSN), and the
other extending the domain to include the secondary X-
point resulting in an unbalanced double-null (UDN). This C-
Mod discharge is nominally considered a LSN, and the first
simulation is done for that geometry.

As usual, the simulation is initiated with a small seed
perturbation, which evolves through linear instability to a
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Figure 6. Fluctuations of the saturation current from scanning probe
in C-Mod.

saturated turbulent state, see figure (5). The linear growth
can be estimated from figure (5) as ~0.25e6s~!. Comparing
that with the linear dispersion relation curves in figure 2
using k; = 5cm™! and @ = O (consistent with BOUT’s
boundary conditions) one finds excellent agreement with the
linear theory.

The saturated amplitudes of calculated »; fluctuations
are quite high: more than 50% at the separatrix and more
than 100% further out, see figure (5). That is a factor 2-3
larger than the experimentally measured fluctuations of the
ion saturation current normalized to the mean value of the ion
saturation current see figure (6), which is taken as an estimate
of RMS(&;)/ (Nj) in the experiment.

The evolution of turbulent plasma is followed for 500
wus, spanning many dozens of eddy turn-over times. The
appearance of turbulent eddies is qualitatively similar to that
typically observed in the experiment with the fast cameras.
To make a quantitative comparison with the experiment a
statistical analysis is performed yielding basic parameters such
as the auto-correlation time, t, and auto-correlation lengths
in the radial, L,4,and poloidal, L, directions. The value
of Lyo is found to be in the range of typical experimental
values, 0.5-1.0cm, while L,y is smaller than experimental
values 0.5-1.5 cm. However the radial domain size for the LSN
case is just 2 cm, constrained by the location of the secondary
separatrix, which suggests that the outer boundary condition
(zero fluctuation amplitude) may be affecting the solution.
This LSN domain limitation is overcome by running the same
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Figure 7. Fluctuations of density at outer midplane for single-null and double-null BOUT runs for C-Mod.

case as a UDN, thereby allowing access to the more distant
radial plasma region. Comparison of the two cases is shown in
figure (7) where the UDN case yields more radially extended
turbulent structures than the LSN case. That is confirmed by
figure (8) where L,q and Ly, are plotted versus the poloidal
and radial coordinates, respectively. The corresponding range
of experimental correlations lengths averaged over all radii are
shown by the shaded areas. One can see in figure (8) that
Lo is quite similar for the two cases, as expected,while Liyq
is considerably larger for the UDN case. Comparison of the
correlation time (to 1/2 of the auto-correlation peak) is less
satisfactory. The BOUT values for both cases are about 2 us,
whereas C-Mod measurements indicate a value about 5 times
larger. Reasons for this difference are being investigated.

For quantitative assessment of the effects of X-point
geometry in these runs we calculate the cross-correlation
function for the fluctuating quantities. The cross-correlation
function is defined as follows:

< B(ro, 0, + ALt +T)P(ro, brer, £, 1) >c4
< |¢(r09 ol'efi g, t)|2 >t

C(, ¢) =

15)
Here ry is the radial index of the chosen flux surface, ¢ is the
toroidal grid index (constant on field lines) and 6 is the poloidal
index. Also, 7 is the time lag, and 6, is the reference poloidal
index.

In figure (9) we plot the absolute value of the cross-
correlation function as a function of the poloidal index (that
goes from the inner target plate to the outer one) and the radial
coordinate expressed as the radial distance from the separatrix
at the outer midplane. The reference location for the cross-
correlation function is taken at the outer midplane. One can
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Figure 8. Correlation lengths for fluctuating density at outer
midplane for single-null and double-null BOUT runs for C-Mod.

observe in figure (9) that, for small radial distances from the
separatrix, the poloidal extent of the correlated perturbations
is independent of radial distance, but for larger distances the
penetration of perturbations past the lower X-point becomes
stronger, as the X-point gets farther away. On the other hand,
as the radial coordinate grows the secondary X-point at the top
of the plasma becomes closer, and the cutoff of fluctuations
near the upper X-point becomes stronger. A plot of the rms
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Figure 9. Cross-correlation function for the fluctuating ¢ (for
T = A¢ = 0) as a function of the poloidal index and the radial
coordinate for the C-Mod simulation.

density fluctuation shows very little activity in the divertor leg
(in contrast to the DIII-D simulations discussed below); hence
for this run the poloidal extent of the high correlation region can
be taken as an indication of the poloidal extent of the structures.
The observed trends—slow evolution of the poloidal extent
until the closest approach to the X-point is crossed, followed
by more rapid expansion into the divertor leg—are consistent
with the theory predictions from section 4.

We can be somewhat more quantitative in our
comparisons; from figure (9) we can estimate the rate of
increase in the poloidal extent of a blob with increase in radius,
from the slope of the level surface of the correlation. The
poloidal length corresponding to a unit increase in poloidal
index varies (the grid is non-uniform), but is around 1cm in
the divertor leg. From the slope in the figure, we therefore
infer that the change in poloidal length of a blob with radial
position df,/dR ~ 30. From the discussion in section 4
(the second paragraph following equation (10)), our theory
predicts this rate of change to be d{ yc|/dy0 = a/p where
a is the blob radius at the midplane. Taking 7 = 20eV
B = 5T, and deuterium, and taking as a typical blob radius
from the simulation a ~ 0.5cm, we obtain a theoretical
estimate dy./dyy ~ 30 in agreement with the simulations.
(The precision of this agreement we regard as fortuitous, since
all of the parameters used for the estimates vary over the
domain of the simulation.)

We further consider a comparison of the blob propagation
speed from BOUT with the estimates of section 4. By
examining successive frames of the simulation from which
the upper plot in figure 7 is drawn we can infer propagation
speeds in the range of several km/s. This is rather larger
than the experimental values shown in figure 3. However,
the conditions of the simulation are also different from the
experiment; what is of particular consequence for theoretical
estimates is that the electron temperature is taken as poloidally
uniform in the simulation, whereas it is the temperature at
the blob end (control surface, or divertor plate) that enters
the theoretical estimate used in the C-Mod discussion of
section 4. The characteristic blob size is also about a factor
of two different. From our estimate in equation (14) with
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Figure 10. Distribution of rms (N;) fluctuations at saturation for
DIII-D simulation.

blob radius ¢ ~ 0.5cm and 7T, ~ 20eV, we obtain R ~
2.6ms~!, in general agreement with the simulation. The
distinction between simulation parameters and experimental
parameters may also provide some clues regarding the apparent
discrepancy in correlation times noted above.

In a separate series of BOUT simulations a study
of plasma turbulence in divertor leg region is conducted.
The basic magnetic geometry is based on a DIII-D
magnetic reconstruction. The background plasma is modeled
approximating typical DIII-D experimental edge data with a
set of simulated axisymmetric profiles [25].

Fluctuations exist not only at the outer midplane but in
divertor legs as well, see figure (10), which shows results for
saturated turbulence. However the leg turbulence appears to
be uncoupled from the upstream turbulence as shown in the
cross-correlation analysis.

If the reference location is taken at the outer midplane
then large values of the cross-correlation function correspond
to locations between the lower X-point and the upper virtual
X-point, see figure 11(a). That was discussed previously
in [25,26]. If, however, the reference location is in the
outer leg then large values of the cross-correlation function
correspond to locations within the leg itself, see figure 11(b).
This analysis shows that turbulence upstream and turbulence
in the legs are uncoupled. We attribute this decorrelation to the
strong shearing of magnetic field near the X-point discussed
in preceding sections. It is noteworthy that fluctuations in the
divertor legs are observed in both the linear (not shown) and
nonlinear (shown) phases; hence we can attribute the divertor-
leg turbulence to instabilities in the divertor leg, as discussed
in section 3.



Boundary plasma fluctuations

c{sphi,éphil[8, &¢, 7=0.00]

—0.67 —-033 -A.6E-17

0.33
AR EEEzimns

102

Figure 11. Cross-correlation of fluctuations (for ¢ = 0) in divertor
leg turbulence simulations: (a) reference location at outer midplane
and (b) reference location in outer divertor leg.

6. Conclusion

From the studies presented here, we can draw the following
conclusions. (1) The ‘heuristic boundary condition’
previously developed to describe resistive closure of currents
resulting from X-point shear is straightforwardly extended
to simultaneously include polarization and viscous (as well
as resistive) channels for current closure. (2) Curvature-
and sheath-driven instabilities can exist in the private- as
well as common-flux regions of divertor legs, isolated from
the main SOL; these offer the possibility of broadening the
SOL without impacting the main plasma. Divertor-plate
tilt can significantly increase the growth rate. Nonlinearly
these can develop into divertor-leg blobs. (3) X-point effects
can isolate blobs in the main SOL from divertor legs, and
non-symmetric blobs in contact with material surfaces can

be dominated by sheath-impedance drive. As a main-
SOL blob propagates outwards, the region where X-point
current closure occurs (the location of the ‘control surface’)
recedes down the divertor leg, but the propagating blob
maintains contact with this region, and so propagates as a
speed determined by X-point termination, until the control
surface reaches a material surface. The blob propagation rate
then transitions to the (lower) speed determined by contact
with material walls. These results are consistent with the
magnitude and relative constancy of C-Mod blob velocities
reported in [9]. The X-point effects would be expected to
have an impact only at the left-most data point in figure 3.
(4) Analytic results are qualitatively confirmed by BOUT fluid
simulations. Simulations of C-MOD find blob-like structures
with amplitudes and spatial correlation lengths comparable
to those observed experimentally. BOUT simulations also
provide evidence of instability and fluctuations in divertor legs
that is uncorrelated with activity in the main SOL.
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Appendix. Basic equations for divertor-leg
instabilities

We assume that unperturbed plasma parameters do not vary
along the field lines. Because of the toroidal symmetry of
the unperturbed plasma, this means that the variation occurs
only in the direction normal to the flux surfaces. To avoid
excessively long equations, we assume that the only quantity
that varies in the normal direction is the electron temperature
T.. This assumption can also be justified by the observation
that the radial scale-length of 7, in the vicinity of the separatrix
is usually shorter than that of the plasma density and ion
temperature; also, as it turns out in the subsequent analysis,
the instability drive associated with the electron temperature
gradient contains a significant numerical multiplier ~3—4.
The perturbations that are most unstable have a ballooning
nature, with a slow variation along the field lines; in a number
of cases they become essentially pure flute perturbations. For
strong magnetic shear near the X-point, the perturbations in
the inner and outer divertor legs are uncoupled from each
other; similarly, if we consider the common flux region, we
assume that perturbations are decoupled from the main SOL
[1]. As shown in [2] and section 2 of this paper, the presence
of the X-point is folded into the analysis by introducing a
boundary condition set on some ‘control’ surface situated
somewhat below the X-point. In this way, we come to the
simplified geometry shown in figure 1. In this geometry,
our earlier assumption that the unperturbed plasma parameters
are constant along the field lines means that these parameters
vary only in the x direction, so that the perturbations can be
represented as f(x) exp(—iwt + 1K,y +iK.z) . Following
[27,28], we represent the two-dimensional (2D) vector K in
the form
(A.1)

K, =k +q, K, =k,
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with k, defined as

ky = —k.B./B,. (A2)

In other words, the perturbation becomes f(x)exp
(igy) exp(—iwt + ik - r), with the 2D vector k being
perpendicular to the magnetic field. The factor exp(igy)
describes (a slow) variation of perturbations along the field
line, whereas the factor exp(ik - r) does not vary along the
field line due to condition k - B = 0, equation (A.2).

We assume that the poloidal magnetic field in figure 1
is directed towards the divertor plate, and that the toroidal
component is directed towards the viewer. In other words,
we assume that By = —B;, < 0, and that B, = B, > 0, with
both

B, >0,

B, > 0. (A3)

We will be using the eikonal approximation, assuming that
perturbation length-scale in the x direction is much less than
the thickness A of the SOL plasma. We will also assume
that the x-component of the wavenumber is small compared
with k, i.e. ky < k. This assumption is based on the results
of the earlier works [2, 27, 28], which showed that usually
the fastest-growing perturbations are of this type. The other
natural assumption is that the poloidal (y) component with the
magnetic field is small compared with the toroidal component:
this is certainly true in a divertor with not very long legs,
where the poloidal distance from the plate to the X-point is
significantly smaller than the plasma radius a. We will retain
only the lowest-order terms in the parameters

k/k<1,  By/B <1 (A4)

The second of these inequalities, when combined with
condition (A.2), shows also that

k, < k. (A.5)

As the plasma is in contact with the equipotential surface
of the divertor plate, the variation of the electron temperature
leads to the variation of the unperturbed plasma potential (as
the sheath potential scales as 7. [29]), and, accordingly, to
the E x B drift in the unperturbed state. The drift causes
the Doppler shift of the perturbation frequency in the (local)
plasma rest-frame from €2 to

Q=w-—k-vp. (A.6)

One can check a posteriori that the frequency shift caused by
the parallel plasma flow is negligible because of the smallness
of q.

The instability that we find has an e-folding time much
shorter than the ion transit time from the control surface
to the divertor plate. Therefore, the ion thermal spread is
unimportant; it is also unimportant whether the ion mean
free path is shorter or longer than the connection length L
between the control surface and the divertor plane: the ions
enter the problem just via their cross-field inertia. With regard
to electrons, we assume that their collision frequency is higher
than the growth rate. Under such conditions, the momentum
equation can be written as

i B
— Q*ming = —Vép + IL X2
c

(A7)
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Here ¢ is the displacement vector of a plasma element, related
to the velocity perturbation by

Sy = —iQE. (A.8)

The pressure perturbation in equation (A.7) can be found from
the electron thermal balance equation, which yields:
8p = —nTJ§,. (A9)
We have used the fact that the perturbations are essentially
divergence-free and that the only unperturbed quantity that
depends on x is T.. The prime here and below means
differentiation with respect to x.
One can find the perpendicular current perturbation from
equation (A.7):
(A.10)

. ¢ 2
%1 = o5 [~ min[B x €1+ B x Vépl}.

B

To find the perturbation of the parallel current, one has to
take the divergence of equation (A.10) and use the current-
continuity equation, which yields

By . . icQ2min
l;@]l\ =-V.-y, = —Tk' [B x &]
t
2ics
+ 1123pk~[B><VB]. (A.11)

Here we have taken into account the fact that, at the edge,
the magnetic field is close to the vacuum field and, therefore,
|V x B| < |VB|. The last term in equation (A.11) describes
the curvature drive. Note also that the current-continuity
equation shows that |§j| > |87, | (because of the large parallel
wavelength of perturbations).

Using inequalities (A.4), (A.5), one finds, to the lowest
order,

ikycﬁzminéx N 2ick,ép)(VB),

By
Pia )
B, B?

B,

qdj; = (A.12)
The divertor legs typically form a 45° angle with the horizontal
plane; as VB ~ —egr B;/R, where ey is the unit vector in the
direction of the major radius R, one has (VB), ~ —B;/2!/?°R.
Using equation (A.4), one finally obtains

Qm; 221!
B, " B(R ) ’
In the case where the plasma is limited at both ends by non-
conducting plates (so that at these surfaces §j; = 0), and
displacement &, is constant along the field line, this equation
yields a dispersion relation for the flute instability, Q? =
—2Y2T!/m;R. In our case, however, the limiting surfaces are
conducting, and the situation becomes more complex.
Consider now the parallel structure of perturbations. To
do that, we use Maxwell equations and the Ohms law:

By . .
i—qdjj = —ikyncé, (A.13)
B, ’

4 .

V x 8B = —19§j, (A.14)

Cc

i
V x 8E = “25B, (A.15)

C

B
sE =i B b g (A.16)
C
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where b = B/B, and 7 is the parallel resistivity: based on
the observation that |8 jH| > |8j || , we retained only the
parallel component of the current in the Ohms law. From
equations (A.14) and (A.16) one finds:

ExB
c

7 v 5By,
4

SE =iQ (A.17)

Substituting this result into equation (A.15), one obtains

8By = —iByqé, — iDuk;8B,/ R, (A.18)
where
Dy = nc? /4n (A.19)
is the magnetic diffusivity. In other words,
5B, = Db (A20)
Dk
1+i
Q
Using
ik B, = 4méj/c (A21)
and equation (A.10) we then find
2U2 BZ 21/2T/
o R B N (A22)

2 Rm:
B (1 + iDmk’) .
Q

We have used here inequalities (A.4) and (A.5). We have also
assumed that, in the Ohm’s law, the parallel electron inertia can
be neglected. This requires that the wavenumber be smaller
than wp./c (note that in [28] this condition is written ‘upside-
down’).

When considered as an equation for g, equation (A.22)
has two roots, g:

q+ = %qo;

B D k2 2]/2T/
t l+im2 ) (@2e Z—Le ). (A.23)
Bpua Q Rmj;

This shows that the spatial structure of the perturbation in the
poloidal direction is

qo =

&, = Aexp(ig+y) + Bexp(ig-y)
= Aexp(igoy) + B exp(—iqoy), (A24)

where A and B are arbitrary constants. By imposing boundary
conditions at the divertor plate and the control surface, and
imposing the solvability condition, one can eliminate A and B
and obtain the linear dispersion relation.

For the case of perfect line-tying at both ends, for which
q = 7 /L4, where

e = Ly(By/By) (A.25)

is the distance between the divertor plate and control surface
(figure 1), equation (A.22) describes various regimes of a
curvature-driven instability. In particular, if the plasma
is perfectly conducting, we recover a standard ballooning
instability for sufficiently small magnetic field (sufficiently
high plasma B); at higher field (lower B), the instability is
stabilized. If, on the other hand, the resistivity is high enough,
the first term is significantly reduced (Dy is large), and the

instability is recovered even at low betas: this is the resistive-
ballooning mode. One can write down the corresponding
criteria and see that, for the case of the C-Mod private-flux
region, B is too small to make the system unstable for perfect
line-tying. However, we will see below that accounting for
more realistic boundary conditions at the divertor plate and
control surface makes the system strongly unstable.

The boundary conditions can be cast in the form of
conditions on the current flowing through the two limiting
surfaces. For the solution of the form (A.24), the expressions
for the parallel and perpendicular currents, to significant
leading order in the small parameters B, /B;, k. /k, and k. / k,
is (see equations (A.4) and (A.5)):

ky (cminﬂz 21/2che’>

Sji=—— +
g \ B, RB,

x [Aexp(igoy) — B exp(—iqoy)] . (A.26)

cQB; inT k,
= —— | Qmink + ~KxB
B2k, QB

t

i

x [Aexp(igoy) + B exp(—igoy)] - (A.27)
The component of the plasma current normal to the end surface
is (also to the lowest required order in small parameters):

B . .
8jn|y:0 = cosafp:r?ju +sina (8,),

cnky cosa ) 21/2Te/
=2 (mQP+=—2)(A-B)
qo B R
ickynT! si
¢ O SY 4y By, (A28)
B,
. B, . . cnk, , 22T
8]11|y:@d = E(S]H + (5JL)V = _qoB)t (m1Q + Te
x [Aexp(igola) — B exp(—igola)] (A.29)

We assume that the length of the divertor leg is not too small,
namely that k,£y > B/B,, tana.

We now match these currents to the currents flowing
through the sheath (at y = 0) and the current flowing to the X-
pointregion (at y = £4). To find these currents, we have to find
the potential perturbations near these surfaces. Proceeding as
in [28], we find that

QBt
8¢ = (A+B) (A.30)
ck,
near the lower boundary and
QB . .
8¢ = —— (Aexp(igota) + B exp(—igota)) (A3D)

Y

near the upper boundary.

Using the boundary conditions relating the currents and
potential perturbations, one can obtain the dispersion relation.
At the lower boundary (y = 0) we have from the sheath CVC
(cf equation (33) of [28]):

. B, 1\ T, QB
5],,’,_0=—en(A+B) u—cosa||lA+=)=+
’= Bt 2 Te CTeky
+iQ2 sinoc} (A.32)
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The parameter A is the logarithm of (277)~!/2 times the ratio

of electron thermal velocity to the ion thermal velocity and is
typically ~3-3.5. So, there is a significant numerical factor in
front of 7. As mentioned at the beginning of the appendix, this
makes the 7, drive more important than the drive associated
with, say, 7,'. From equations (A.28) and (A.32), we obtain
the following equation:

1/277

cky cosa 5 2V°T
———— M+ ——)(A—-B)
qoB: R

B, 1\ 7/
=—e(A+B)ju—cosa || A+=)—+
B, 2] T,

ick,T/sina
eB, ’

eQBt
cTck,

+iQsina + (A.33)

Atthe control surface (y = £4), we use the ‘heuristic’ boundary
condition (see section 2) which can be represented as

B
8jn = Ef |ky| ondep (A.34)

or, accounting for equations (A.29) and (A.31),

k. 21/2T/
Cryn (mis‘22+ e)
qon R

(A exp(igola — B exp(—igolq)))

|ky| ou 2B, . .
= 'T(A exp(igolq) + B exp(—igofa)).
y

(A.35)

From the solubility condition of the set (A.33), (A.35),
one can obtain a dispersion relation which covers, in a
unified manner, a number of effects that have been considered
previously in a piecemeal manner: the drive, associated with
the temperature gradient and sheath BC, the flute instability in
the presence of current leaks to the end surfaces, the role of the
boundary condition at the control surface, the effect of a tilt
of the divertor plate, and possible finite-beta modes. It covers
also the effect of resistive ballooning.

We concentrate here on the case of a low-f plasma. We
first derive a simplified dispersion relation for this case by
taking the limit of vy — oo and then formulate applicability
conditions for such an approximation.

In the limit of a large Alfven velocity, one has

qoly < 1. (A.36)

In this case, it is convenient to introduce, instead of A and B,
the coefficients a and b, according to

A—B

a s
q0

b= (A+B){y. (A.37)

One then has, for small gg:

Aexpliqots) — Bexp(—iqota)
q0

Aexp(igola) — B exp(—igola)la+ ~ b/L4,

+ b;

(A.38)

624

so that equations (A.33) and (A.35) are reduced to

cky cosa m‘92+21/2Te/ at,
B, ' R

B, 1\T. eQB7 . _ .
= —ebju—cosa||(A+=- )=+ +iQsina
B 2) T. " cTik,
ick,T!sina
+ (A.39)
eB;

and

k 2127
M (miQZ + g ) aﬁd
B, R

_b |ky| ou2B; _ Ckyn i+
cky B,

ol/27
e ¢ ,
R > d
(A.40)

where from the dispersion relation (7) of the main body of the
paper immediately follows, with A = T./|T/|.

We now formulate conditions under which the flute
approximation (A.36) holds. As we are interested in modes
whose growth rate is comparable to, or greater than, the growth
rate of a curvature-driven mode, i.e. |Q|* > T//Rm; , one can
rewrite the condition (A.36) as:

12

2
 Dwiky < 1.

o (A.41)

By |22
=~
lgol €4 B

pVA

If the plasma electrical conductivity is high, so that the
second term under the square root is small, the validity of the
flute approximation becomes

Brlal®l (A42)
BpUA
(Note that in the opposite limiting case, there may exist
unstable modes localized near the divertor plate; these modes
have been considered in [28]. The general dispersion relation
based on equations (A.33), (A.35) allows one to consider
various intermediate cases.)
If the electrical conductivity is low, so that

Dyik; > |Ql, (A.43)
the applicability condition of the flute approximation becomes
more stringent:

By

(191 Dwk?) ' < 1. (A.44)
prA i

If this condition breaks down, the unstable modes localized

near the divertor plates by the effect of resistive ballooning

may appear.
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