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Karger et al. {1] have experimentally studied the
correlation between periodic hard-X-ray emission from
the Pulsator limiter and the m = 2 island appearing
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ABSTRACT. A guiding-centre computer code is used to
map out trajectories of collisionless high-energy runaways in the
presence of an m = 2 magnetic island in a tokamak. The particle
drift surfaces retain the island structure even when the drift
orbits are considerably shifted from the flux surfaces, and
trapped-particle orbits are observed to be unaffected by the
presence of the island.

1. INTRODUCTION

There is a growing body of evidence for the existence
of m = 2 magnetic islands inside tokamaks [1, 2]. It is
clear that low-energy particle drift surfaces will tend
to follow these perturbed flux surfaces, but it is not
as yet clear how the drift orbits of high-energy colli-
sionless particles are affected by the presence of such
structures. Does the usual shift of the high-energy
particle drift surfaces from the flux surfaces destroy
the island structure in the particle orbit? The question
is of interest for the confinement properties of high-
energy runaways, and perhaps also for neutral-beam-
injected ions or fusion-produced a-particles which can
also have large orbit shifts and are fairly collisionless.

The structure of magnetic islands in tokamaks has
been studied extensively. Chrisman, Clarke and
Rome [3] showed that helical sheet current pertur-
bations in a cylindrical tokamak geometry can produce
islands in the flux surfaces and proposed a connection
between the observed modulation of hard-X-ray emis-
sion for ORMAK and these perturbed flux surfaces.
Finn [4] and Waddell et al. [5] (among others) have
studied the sensitivity of island structures to variations
in the assumed plasma current profile and have
proposed as a mechanism for the major disruption the
non-linear coupling between different m-mode islands.

2 Present address: Tokamak Fusion Laboratory,
2567 Boelter Hall, University of California,
Los Angeles, CA 90024, USA.
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high-energy (< 8 MeV) runaways before the main
disruptive voltage spike was due to the outward shift
of these particles. Observations on ATC and other
tokamaks [6] have also shown that large-amplitude
MHD oscillations (without disruption) can also modu-
late and enhance the loss of runaways.

Recently, Fussmann et al. [7] have extended the
Pulsator work both experimentally and theoretically.
In particular, they have calculated guiding-centre
trajectories of runaway orbits in the presence of an
approximately m = 1, n = 1 external magnetic pertur-
bation. Our results described below are qualitatively
consistent with those of Fussmann et al. in that an
island structure in the runaway drift orbit is observed
even though the orbits are shifted from magnetic-flux
surfaces. However, our results supplement and extend
theirs at the following points:

1) We have used an internal m = 2 helical pertur-
bation instead of the external (stellarator-type)
perturbation of Ref. [7]. This internal perturbation
was chosen to fit the best available information on the
internal structure of the m = 2 island in the tokamak.
In addition, we have used a realistic plasma current
profile instead of an axial filament current profile as
in Ref. [7].

2) We find that trapped-particle collisionless orbits
are unaffected by the magnetic island (only passing
particle orbits were reported in Ref. [7]).

3) We have followed the time-dependent runaway
orbit by including a parallel electric field, and find that
these orbits are simply related to the time-independent
ones (as calculated in Ref. [7]).

In the following analysis, we calculate collisionless
runaway drift orbits in the presence of anm =2
magnetic island structure which is considered to be
stationary on the time scale of a runaway toroidal
transit (typically, ~ 50 ns). Such runaway drift
surfaces would tend to remain locked in phase with
respect to the slowly rotating (f = 10 kHz) island,
presumably causing the observed B, oscillations to be
correlated with hard-X-ray emission from the outer
limiter of the tokamak. The effects of a growing or
turbulent island structure have not been considered in
the present work. The computation of the effect of
more than one island on the runaway orbit requires a
more complicated formalism and has not been
attempted here.
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2. GUIDING-CENTRE CODE

The following simplified set of guiding-centre
equations was used to calculate orbits in a standard
cylindrical geometry (r, 8, z), with x =r cos @,

y =rsin0, and for an electron with mass m, pitch
angle £ and velocity v, vz =vcos§ and v| = vsin£, and
V2 = v+ vyt
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R =Ry+x=Ry+rcosh

B; =By Ry/R is the axial (‘toroidal’) magnetic field
vie= \/vi2+ v o= /T —1/y?

4= eBy/mqc

M =vymyv;2 R/(2ByRy)

E = electric field along Z

s =arc length along orbit

The following simplifying approximations have
been made in the above equations:
1) toroidal geometry is approximated by a periodic
cylindrical system (periodicity 2nR,) in which the
axial (‘toroidal’) magnetic field is B; = BoRo/R;
2) the poloidal field B, = (B2 + B?,)"2 is chosen to
be cylindrically symmetric and to be much smaller
than the axial field (the usual tokamak ordering);
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3) the magnitudes of the cross-field VB and the
centrifugal drift velocities vq are evaluated by using
only the local unperturbed axial field, ignoring the
smaller poloidal field and the still smaller island fields.
Thus,

_ L (Eﬁ_ N P_i) o
eB3 Ying 27m0 _QoRo

(sz +V12/2)

(see Ref. [8] for the relativistic drift equations).

4)  the mirroring term written as MoB/ds, where M
is the magnetic moment, is approximated for a
relativistic electron as M = ym,v;>R/(2 BoR,) and
dB/0s = (By/B) (0B/3x) = — Bx/R, so that the force is
approximately (ymgv;2/2Ry) (Bx/Bo).

The most important feature of these equations in
the present context is that the guiding-centre velocity
vector tends to point in the direction of the local
magnetic field which includes the island fields in the
Bx and By. It is this which allows the formation of
the magnetic islands in the drift surfaces. Of course,
the results we obtain using these approximations may
be modified to some extent by a more exact treatment
of the problem; however, we believe that the basic
orbit patterns are valid (within the restrictions
described at the end of Section 1).

Left to be specified is the toroidal current distri-
bution which determines the unperturbed poloidal
field. We have taken

_Bo 1 _m 2
q(r) B, R 1C, [ +(@/10)*] )
to define By, where 1, is a parameter which determines
the effective width of the current channel, and

C, = 1 +(15/1y)?, where 5 is the radius of the singular
surface (m, n). Normalizing all radii to the limiter
radius a, we have typically form=2,n=1:
fo=1,/a=0.8, T3 =rs/a=0.6; thus, q(a) =3.3 and
q0)=1.3.

This set of five coupled differential equations has
been soived numericaily by using a weli-documented
computer code (ODE). It is found that the code
reproduces the usual particle orbits with a shift
dy = (a®/2R,) (IA/1) = /By, of high energy electrons
from the flux surfaces [9] (here, I = 17y kA, and I
is the current producing Bp) and also produces the
usual banana orbits for large £. Particle orbits in this
field structure (without islands) can be followed for
many hundreds of toroidal transits without a noticeable
wandering from the initial drift surfaces.
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3. m =2 ISLAND PERTURBATION

An m = 2 magnetic island has been included into
the code by adding to Eq. (1) the perturbed poloidal

fields R.1 and R. 1 due to the island. Since these

fields Bx; and By due to the island. Since these
m=2,n=1 fielés are much smaller than By, no
change in the particle drift velocity vq has been made;
the effect of the island, therefore, comes entirely
through the tendency of the guiding centre to follow
the perturbed magnetic field line.

The perturbed fields are obtained from an analytic
fit to a saturated m = 2 island structure as calculated
by using the 2-D MASS code [10]. A helical flux
function ¢ is defined in a cylindrical co-ordinate
system:

1 9
B =T %0
v  kr
Bg=—7—— — Bz (k=n/R,) 3)
or m

B, = constant

It is easy to verify that the unperturbed field given
by Eq. (2) can be written in terms of a normalized
<I\lo = ¥, /(a%kB,/m) and a normalized T=r/a as
follows:
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The perturbed helical flux @1 (r, 8, 2z) for the island

has been taken from a fit to the numerical results of

the MASS code to be:

T, = C P exp [(F-afs 2 /@2 ] () cos 20+kz)  (5)

where W = w/a is the normalized width of the m = 2,
n =1 island, and
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with
f W =%"exp \ 777 ) (1 -7 Q)

The island is, therefore, specified by choosing ¥ (the
radius of the m = 2 singular surface), W (the width of
the island), and « (a parameter which slightly affects
the centring of the flux surfaces within the island). It
can be checked that ﬁ V\/f/ =0, thus, a magnetic
field line lies on a helical flux surface of constant T

The perturbed magnetic fields B, (r, 8) corresponding
to this island can be found through Eq. (3). These
fields are added to the unperturbed fields to form the
m = 2 magnetic structure. It is important to note that
both the poloidal and radial components of B, are
added into the code.

4. DRIFT ORBITS WITH m = 2 ISLAND

In Fig.1 we show a typical result for a set of runs in
which the runaway energy was varied to show the
effect of the shift dy on the drift orbit. Here, M =0,
E = 0, and the island perturbation was the same for all
cases (W = 0.4). Each dot in these graphs is the
puncture of a fixed z = constant plane by the particle
orbit. The drift surfaces for ¥ & 1 are, as expected,
identical with a direct plot of the flux surfaces. For
higher-energy electrons, the drift surfaces are shifted
to the right, and it can be seen that the island structure
in the drift surfaces is retained until about dy ~w, at
which point the island structure becomes severely
distorted and disappears altogether for dy/a> 0.7.

Several interesting features of these orbits can be
mentioned. First, there appears clearly m = 3 structure
somewhere between q = 1 and q = 2 for case (b); this
is most likely due to the coupling between the m = 2
island and the m = 1 orbit shift. Secondly, the very-
high-energy orbits unexpectedly show both lobes of
the m = 2, n =1 island structure on one side of the
minor axis [case (e)]. It should also be noted that the
outermost edge of the island in the drift surface can
extend at least 0.15a beyond the edge of the island
structure in the flux itself [case (¢)].

Another set of runs was made in which the magnetic
moment was varied by changing £ for a fixed particle
energy and a fixed island structure, and some results
are shown in Fig.2. (The orbits in this figure had
d7/a ~ 0.1 and were started at a fixed x/a = 0.8,
y/a=0.) For the passing particle orbits in (a) and (b),
the drift surfaces show the typical m =2, n = 1 island
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FIG.1. Drift orbits of relativistic electrons in the presence of
an m = 2 island. The electron energy (and hence the orbit
shift dv) is increased from (a) to (f). Only orbits enclosed

writhin the chamber minor radius are shown, Here M =0
Wiinin (ne cnamoer minor rgaius are snown, 2¢re, &8 = U,

Fo=0.6,7= 0.8, W= 0.4, and & = 0.4 for all cases.

structure, but for large £ (e.g. case (d)} the orbit
topology changes to that of a normal trapped particle
with no trace of an influence from the island (i.e. the
orbit is nearly identical with or without the isfand
perturbation added to the field structure). Near the
trapping boundary £ = 57° in case (c) the orbit
structure becomes complicated and appears to become
ergodic over a limited region. This is the only example
of ergodic-type behaviour observed in our results;
normal orbits such as those in Figs 1 and 2 have been
mapped out for hundreds of transits without showing
such a wandering.

The effect of particle acceleration on drift surfaces
has also been modelled through the electric field term
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in Eq. (1). For the case in which no island was put
into code, it was found that, as a particle accelerated,
its drift orbit gradually shifted away from the flux
surfaces without a change in the minor radius of the
orbit. When the island perturbation was included,
this behaviour was again obtained. This generally
meant that an orbit which started out on an island-
shaped flux surface retained that structure as the shift
increased, i.e. the orbits were just as those shown in
Fig.1, given the (approximate) constraint that the
orbit minor radius remained unchanged as the particle
energy varied.

5. DISCUSSION

We have found in this model that high-energy
particle drift surfaces can be shifted considerably
from an m = 2 island flux surface and still retain the
island topology. It has also been found that trapped-
particle orbits are not affected by the island structure,

£=57° £=58°

FIG.2. Drift orbits with varying pitch angle & in the presence
of the same island as for Fig.1. Cases (a)and (b) show the
island-shaped drift orbits for passing particles, case (d} shows
the absence of the island structure for a trapped-particle orbit.
Cuse (c) shows some ergodicity near the trapping boundary.
All orbits here have dy = 0.1 and are started at x/a = 0.8,
yla=0.
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and that accelerating particle orbits shift from the
flux surfaces while roughly retaining their initial
minor radius.

The first of these results is consistent with the
expectation that a small shift of the drift surfaces
from the flux surfaces should not affect the orbit
topology. We have found in this model that a shift of
< 0.15a may be considered to be small. However, for
larger shifts the topology can change significantly,
producing new types of drift orbits such as those shown
in Fig.1(e), in which both lobes of the island in the
drift surface are on one side of the magnetic axis.

The lack of an island structure for trapped particles
is not so unexpected since these particles do not
completely resonate with the helical island pertur-
bation. Since this effect is not limited to particles with
large orbit shifts, perhaps fluid codes for island growth
need to be modified to include this fact.

The accelerating particle orbits are seen to be
closely related to the time-independent orbits. This
is likely to be connected with the statement that the
cross-sectional area of closed runaway orbits is an
adiabatic invariant with respect to particle energy
variations [7].

There are several considerations, both theoretical
and experimental, which need to be elaborated before
a comparison of observed runaway confinement with
this model can be attempted. Qualitatively, it is clear
that the modulation of runaway loss at the outer
limiter shows that the confinement of these particles
is affected by the m = 2 mode. A quantitative expla-
nation of this phenomenon needs to take into account
at least the following points:

1) The model used here of a single m = 2 island
ignores effects due to the possible coupling with other
modes (e.g. the m = 1) and, in particular, ignores the
possibility that such coupling may cause stochasticity
in the fine structure of the orbits. Thus the effect on
runaway confinement could depend significantly on
the size of the island perturbation [6] and on the
current profile which in part determine the extent of
the coupling.

2 The exnerimental ohservations of rminawav lngs
Z) 106 experimental observations of runaway 1088

at the outer limiter are in general not sufficient to
define the transport of runaways within the plasma.
For example, a simple kink-mode magnetic structure
might also produce the modulation of runaway flux to
the limiter. Also, a quantitative analysis of runaway
confinement requires a knowledge of their production
rate inside the plasma (which cannot be determined
with precision experimentally) and also an energy-
resolved runaway diagnostic (since many energy
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components are intersecting the outer limiter simul-
taneously).

3) The implications of even our simple model
described here have not been mapped completely; for
example, the long-time behaviour of the orbits and the
ergodic behaviour observed near the trapping boundary
can be explored more fully.

It should, therefore, be stressed that it is quite
difficult to determine the magnetic structure of the
tokamak through a study of runaway confinement.
Clearly, the experimental results of the Pulsator
group |1, 7] concerning the modulation of the runaway
flux at the limiter, and the previous experiments on
runaway diffusion [11], have been somewhat ambiguous
with respect to their theoretical interpretation. For
this reason, the present work is not intended to
explain the experimental results, but rather to add to
the understanding of this particular theoretical model.
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ABSTRACT. A general theory for the stability of collision-
less drift-wave eigenmodes in sheared slab magnetic fields is
developed using the S-matrix technique. The eigenmodes are
described with the integral formulation which fully takes into
account the non-local effects of finite ion gyro-orbits. The
universal eigenmode is then shown to be absolutely stable for
arbitrary radial wavelengths.

Recently, significant progress [1] has been made in
understanding the stability properties of drift-wave
eigenmodes in a sheared magnetic field and slab
geometry within the second-order differential eigen-
mode equation formulation. However, the differential
formulation is justified only when the radial wave-
lengths are much longer than the ion-Larmor radius
(Ipfd’/dle <1). For the case of cold ions (T; < T,),
the ion-sonic turning points of Pearlstein and Berk [2]
are much closer to the mode-rational surface (E> _ﬁ =0)
than are the regions of heavy ion-Landau damping and,
hence, determine the radial scale length of the drift-
wave eigenmode. Then the simple WKB estimate
k, ~ (L, Ty/L T, )?/p; (where L, and L are the
density and magnetic shear scale lengths) shows that the
long radial wavelength assumption is valid here. For
T, ~ T;, the WKB estimate kyp0; ~ (L,/Lg)"/? still
holds for long azimuthal wavelength modes propagating
in the electron diamagnetic drift direction. However,
at shorter azimuthal wavelengths (kypi > 1), the radial
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localization of the eigenmode is determined by ion-
Landau damping and the radial wavelengths become
of the order of the ion-Larmor radius, so that the usual
differential eigenmode equation ceases to be valid.
For eigenmode travelling in the ion diamagnetic
direction, the differential formulation is, in general, not
at all valid because of the importance of ion-Landau
damping for this kind of mode. Moreover, experi-
mentally observed drift-wave fluctuations [3] tend to
have wavelengths shorter than the ion-Larmor radius.
Therefore, to assess the stability properties of short-
wavelength drift-wave eigenmodes correctly, it is neces-
sary to take into account explicitly the non-local nature of
ion gyro-orbits through an integral eigenmode equation
formulation {4]. This is particularly important because
the differential formulation predicts the existence of
very weakly damped eigenmodes. Hence, it would
appear that any small additional effect might give rise
to absolute instabilities. Although there have been some
numerical efforts [5] in this direction, we believe that
this letter is the first such analytical treatment. Our
major conclusion is that, even using the integral
formulation with full ion-Larmor-radius effects, the
collisionless universal eigenmode is absolutely stable.
In the course of our investigation, we have developed a
general stability theory employing the S-matrix technique
in the complex x plane, which may have wider
applicabilities.

Our method for analysing the stability of drift-wave
eigenmodes with arbitrary radial wavelengths is an

extension of the S-matrix technique [6] for the
diffarential formnlation Rriafly ctatad the method

differential formulation. Briefly stated, the metho
consists of introducing a real parameter X\ which varies
from 0 to 1 such that A = 1 corresponds to the

original integral equation and A = 0 corresponds to

the differential equation approximation which has

been shown [1, 7] to allow only damped eigensolutions.
We then formulate the problem as a scattering one and
show that the scattering amplitude contains no poles
on the real w axis for all real A between 0 and 1. Care
must be taken to ensure that no additional unstable
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