

<u>Asymmetric Edge Biasing for Scrape-</u> <u>off Layer Control in NSTX</u>

College W&M Colorado Sch Mines Columbia U Comp-X General Atomics

INEL Johns Hopkins U

LANL LLNL

Lodestar

MIT

Nova Photonics

New York U
Old Dominion U

ORNL

PPPL PSI

Princeton U

SNL

Think Tank, Inc.

UC Davis

UC Irvine

UCLA UCSD

U Colorado

U Maryland

U Rochester

U Washington

U Wisconsin

S.J. Zweben, L. Roquemore, C.E. Bush, R. Kaita, H. Kugel, R.J. Marsala, Y. Raitses (PPPL)

R.J. Maqueda (Nova Photonics)

R.H. Cohen, D.D. Ryutov (LLNL)

and the NSTX Research Team

APS DPP 2008, paper CO3.00012

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kvushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo **JAEA** Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI KAIST POSTECH ASIPP** ENEA. Frascati CEA. Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep **U** Quebec

Convective Cell Generation

 Goal is to broaden heat / particle SOL width at divertor plate by creating local convective cells [Cohen/Rytuov '97]

NSTX Electrodes and Probes

- Electrodes and probes located below outer midplane
- Electrodes biased up to ±100 V with respect to vessel

Density Profile Effects of Biasing

- Radial profiles of I_{e,sat} averaged over many on/off cycles
- Typically n ~ 10^{11} cm⁻³ and T_e ~ 5-10 eV (at r=0 cm)

Electrode Bias Voltage Scan

- Effects on density profile vary with biasing voltage
- Need only V ~ 30 volts for most of effect to occur

Single Electrode Response

- Density responds more to positive than negative electrode,
 as predicted by Ruytov/Cohen from sheath theory
- But positive biasing requires a large power ~ 0.5 MW/m²

Reversed Polarity Electrodes

- Density profile reversed with opposite E polarity
- Similar effect when both electrodes are positive

Qualitative Interpretation

Profiles changes ~ consistent with expected ExB flows

Conclusions

- Biased electrodes can control local SOL at outer midplane
- Results qualitatively consistent with convective cell model

For quantitative understanding, need to know range of electric field penetration both II and ⊥ to B

(no simple models)

Plans

- Electrodes in tiles between liquid lithium divertor segments
 - measure effects II and ⊥ B with camera + probes
 - learn to minimize power needed for SOL control

R. Ellis