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•  Tokamak divertors and the divertor heat flux problem
 
•  NSTX SOL biasing results and interpretations

•  Plans for NSTX and future applications
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Tokamak Divertor Design

http://www.jet.efda.org/pages/focus/plasma-edge/index.html

•  Shields impurities from
      main plasma

•  Easier H-mode access
       (reasons unknown)

•  May make helium ash 
       pumping easier

•  Allows divertor plates
       to be removed
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Divertor Plate Heat Flux for DEMO

•   A 1000 MWE tokamak reactor will have Pα~ 500 MW of 
alpha heating power going to the vacuum vessel wall

•   A significant fraction of this (~ 250 MW) is likely to flow in the
“scrape-off layer” (SOL) just outside the separatrix to
the divertor plates at the bottom of the vessel

•   The area of the SOL strike zone at this plate A ~2πR Δplate ,
where Δplate is the radial heat flux width at the plate

    =>    Δplate will determine time-average divertor heat flux
        (transient heat flux could be much higher)
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=> Pplate ~  250 MW / [2π 6 m * 0.2 m] ~ 30 MW/m2

         (local ‘high’ spots could be much larger)

Estimate of Heat Flux for DEMO

•  Assume χsol ~ a2/τE ~ 1 m2/sec (from ~ global confinement)

•  Assume τII ~ LII/Cs ~ πqR/Cs ~ 3x10-5 sec (Te~1 keV, R~6 m)

=>  ΔSOL (near outer midplane) ~ 0.5 cm

•  Assume field line has grazing angle divertor plate of ~ 1-2º

=>  Δplate (at divertor plate) ~ 20 cm



5Andrew Delano and Devesh Mathur, Honeywell Electronic Materials, 
Semiconductor International, 10/1/2007 http://www.semiconductor.net/article/CA6482821.html

Heat Flux Comparisons
surface
of sun

Divertor
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~ 2 cm

Divertor Plate Lifetime Issues

•  Divertor plates cooling lines only ~ 2 cm below surface

•  Expect tile surfaces to have erosion lifetime ~ 1 year (?)

•  Catastrophic LOCA possible within ~ 1 sec of disruption

divertor plate divertor cassette divertor transporter
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Possible Solutions

•   Raise neutral density in SOL to make ‘detached’ divertor

•   Add low-Z impurities to SOL to make ‘radiative’ divertor

•   Expand magnetic footprint of divertor (e.g. Super-X)

•   Ergodic magnetic limiter or divertor (e.g. Textor)

The first two are unlikely to work for a DEMO

The second two are difficult and expensive
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•   Asymmetric potential perturbations near divertor plate should
create local convective cells which should modify SOL 
[R.H. Cohen NF (1997),  Ryutov PPCF (2001), Cohen PPCF (2007)]

•   Can make perturbations using ‘wavy’ plates, varying surfaces, 
gas puffing, or ICRF in SOL [Myra, D’Ippolito PoP (1993, 1996)]

Theory of Asymmetric Divertor Bias

R.H. Cohen NF (1997)
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•   Goal is to broaden heat / particle SOL width at divertor
       plate by creating local convective cells

Picture of Convective Cell Generation

SOL strike zone

radially 
outward

electrode on
divertor plate

B

convected 
  density
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ExB Convection in the SOL

•   Create DC poloidal electric field to make radial ExB flow

•   To significantly modify SOL, radial ExB movement  ≥ ΔSOL

ΔExB ~ vExB τII > 1 cm

where vExB = 108 Epol(V/cm)/Btor(Gauss)

•   Assuming τII ~ LII/Cs ~ 3x10-5 sec and B = 5 T

        =>  Epol ~ 10 Volts/cm   (seems easy)
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Results for ϕp “upstream”:
ϕp(+) / ϕp(-)  >> 1 (far wall)

ϕp(+) / ϕp(-)  ~  1  (X-point)

Effect of σ⊥ on ϕp:

ϕp(+)  ~  ϕbias-Te/e   (low σ⊥)

ϕp(+)   =>  Te/e       (high σ⊥)

Simplified Models of Plasma Potential

•    Plasma potential ϕp modeled using σll and divertor sheath 

•    Bias currents close either at far wall, or σ⊥ near X-point

far wall X-point

divertor
 plates

divertor
 plates

plasma plasma
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Convective Cell Rotation

R
⊗B

N >> 1N << 1

coE region

•  Number of rotations around B:  N ~ τIIvExB/2πd⊥ ~ E⊥(LII/d⊥)

•  Looking along B into electrode on divertor plate, strike zone
        can broaden if N >> 1 and there is dispersion in rotation

E region

toroidal
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Open Physics Issues

•   Effect of any ‘anomalous’ σ⊥ (including neutral collisions)
on the parallel penetration of poloidal electric field
(high σ⊥ could ‘short out’ any poloidal electric field)

•   Extent of cross-field penetration of potential (would affect
radial extent of SOL displacement or broadening)

•   Effect of biasing on SOL turbulence (either generating it
via Kelvin-Helmholtz instability, or ‘suppressing’ it)

=>   Predictions for change in SOL heat flux very uncertain
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NSTX SOL Biasing Experiment
•  Initial experiment located just below outer midplane

•  Planning divertor electrode experiment for 2009 run

Biased electrodes 
and probes

HHFW 
antenna

B field

GPI
puff
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Biased Electrodes and Probes

•  Electrodes biased ≤ ±100 V with respect to vessel ground

•  Nearby Langmuir probes biased DC or swept ± 50 volts

+

-
probes

ExB
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•   Some experiments have created a local Epol in the SOL
JFT-2M  [Hara et al, J. Nucl. Mat. 241-243, 338 (1997)]
C-Mod [Winslow and LaBombard, JNM ‘99, CPP (2001)]
MAST [Counsell et al, J. Nucl. Mat. 313-316, 804 (2003)]
CASTOR [Stockel et al, PPCF 47, 635 (2005)]

•   MAST experiment was done to test ideas of Cohen/Ryutov,
resulting in partial confirmation of theory, e.g. movement
and broadening of Dα at biased divertor “ribs”, but with
large SOL heat input due to biasing itself (~ 250 kW)

•  Other experiments have seen potential propagate along B
DITE [Pitts and Stangeby, Plasma Phys. Cont. Fusion  32, 1237 (1990)]
TEXT [Winslow et al, Phys. Plasmas 5, 752 (1998)]
W7-AS [Thomsen et al, Plasma Phys. Cont. Fusion 47, 1401 (2005)]

Previous Experiments
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Goals of this Experiment

•  Measure the effect of electrode biasing on local density and 
potential using the local Langmuir probes 

•  Measure the effect of electrode bias on Dα light emission 
~ 1 m along B using the gas puff imaging diagnostic

•  Understand the physics behind these results in order to help 
design divertor plate electrodes (e.g. for NSTX)

=>   Did not expect any global plasma changes
        (and none were observed)
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Ip ~ 0.8 kA
B=4.5 kG

NBI ~ 2MW

E3 voltage

E3 current 
0               0.1             0.2             0.3              0.4             0.5

        time (seconds)

Typical NSTX Shot with Biasing

outer gap (m)
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Electrode and Probe (I,V) Signals

Fig. 2

V(E2)

I(E2)

V(E3)

I(E3)

I(P3b)

#127054

•  Here E2 @ - 90 volts, E3 at + 90 volts, P3b @ +45 volts

•  Large increase in probe current ~ density at each bias

+90 V

-90 V

0.22               0.26               0.30        0.34 sec

H L
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Electrode (I,V) Characteristics

•  Positive bias (electron) current >> negative bias (ion) current

•  Implies significant ‘anomalous’ σ⊥ (~ like a Langmuir probe)

Power = IV ~ 1 MW/m2

would be a problem for
divertor heat reduction !

For “floating” electrodes
current lower but effects
on SOL also much less
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   L-mode (± 90 volts)         H-mode (± 90 volts)  

Density Profile Effects

•  Radial profiles of Ie (∝ ne) averaged over ~ 10-30 cycles

•  Typically n ~ 1011 cm-3 and Te ~ 5-10 eV (probe at r=0 cm)

electrode
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Potential Profile Effects

•  Floating potential increases by ≤ 5-20% biasing voltage

•  Increase in ϕf falls off ~ 2 cm away from electrodes

   L-mode (± 90 volts)         H-mode (± 90 volts)  
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Single Electrode Response

•  Density responds more to positive than negative electrode,
~ as predicted by Ruytov/Cohen from sheath theory

•  But positive biasing requires a large power ~ 0.5 MW/m2 
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Ohmic and RF Heated Plasmas

•  Similar density profile changes seen in OH and RF plasmas 

OH plasma (±90 volts) RF plasma (± 50 volts)
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Electrode Bias Voltage Scan

without biasing

•   Effects on density profile vary with biasing voltage

•   Need only V ~ 30 volts for most of effect to occur

with biasing
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Reversed Polarity Electrodes
•  Density profile reversed with opposite E polarity

•  Similar effect when both electrodes are positive
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Floating Electrode Response

•  ‘Floating double probe electrode’ has less effect than
        electrodes biased with respect to the vessel wall

Floating @ ± 45 volts
Floating  ~ 1 Amp
Positive  ~ 9 Amps
Negative ~ 1 Amp

  floating electrodes
  draw ion saturation

  current, as expected
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•  If Epol ~ 50 V/cm => vEXB ~ 2x106 cm/sec > 10 x vblob !

•  Density changes seem ~ consistent with expected flows

Qualitative Interpretation

-

normal

+

high
  n

reversed

+

-

both +

+

+
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Effects of Biasing ~ 1 m Along B

•  Gas puff imaging (GPI) diagnostic measures Dα in SOL 

~ 1 meter 
   along B

GPI
puff

GPI
view
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Correlation of Probes with GPI
separatrix antenna 

edge probe #

#2

#3a

#3b

#3c

#3d
24 cm
poloidal

24 cm radial

•   High correlation of GPI fluctuations 
      with probe fluctuations along B

      colors = correlation (80%=white)
      green = EFIT projection of B

  =>  can be used to locate electrodes
         in GPI field of view to look for
         effects of biasing there
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GPI Movies With & Without Biasing

with biasing without biasing

•  Only marginally visible effect of bias on GPI turbulence

E2 = -95 volts
E3 = +40 volts
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Radial Profile of Dα Emission

•  No significant change in Dα profile at GPI during biasing

green dots = electrode centers
 white line = range of this plot

  

 

electrode 
center red circle = radii of probes
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Tentative Interpretation

•  Parallel penetration of Epol seems to be ≤ 1 m along B

•  Anomalous σ⊥ possibly from neutrals or turbulence

•  Assuming LII ~ 30 cm, Te ~ 8 eV, d⊥ ~ 2 cm, E⊥ ~ 50 V/cm

          =>  N ~ τIIvExB/2πd⊥ ~ 3  (order-of-magnitude)

           could be in regime of significant SOL modification
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Simple Model for SOL Modification

•  Assume constant ExB rotation with rotational spreading

•  Best fit give N ~ 0.5 at ±90 volts, but not a very good fit

Radius (cm)

Simple ModelVoltage scan data
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Better Model of Convective Flow

•   Need to input pre-biasing density profiles both ll and ⊥ to B

•   Need to know ϕp effects due to biasing both ll and ⊥ to B

•   Need to know if biasing affects turbulent radial transport

•   For divertor application, need to include effects of small 
angle of B to plate, X-point magnetic shear, maybe
finite ρi and f(ve)

      =>  could be done with SOL codes under development
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•   Electrodes in tiles between liquid lithium divertor segments 

-  measure effects II and ⊥ B with camera + probes

-  learn to minimize power needed for SOL control

NSTX Divertor Electrodes

R. Ellis

Divertor SOL

Electrodes

probes
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Future Applications ?

•  Power required for biasing divertor plates at V ~ Te and 
I = Isat would be acceptable if SOL effect was large

•  Possible issue of electrode insulator damage in high 
neutron flux environment

•   Could look for other methods to create convective cells

-  asymmetric neutral gas puffing at divertor plate
-  RF generation (ICRH, LH, ECRH at midplane) 
-  biasing perturbed magnetic field lines at plate
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Summary and Outlook

•   Divertor heat flux is a serious problem for tokamak reactors

•   One potential solution is convective cell generation in SOL

•   Local Epol does modify local density profiles in NSTX SOL

•   Results qualitatively consistent with convective cell model

⇒   Additional experiments are needed on divertor plate biasing
to understand the physics and to improve the efficiency


