Relationship Between Edge Zonal Flows and L-H Transitions in NSTX

S. J. Zweben¹, T. Munsat², Y. Sechrest², D. Battaglia³, S.M. Kaye¹, S. Kubota⁴ and the NSTX Team

¹ Princeton Plasma Physics Laboratory,
² University of Colorado
³ ORNL, Oak Ridge
⁴ UCLA, Los Angeles

EFTSOMP Workshop, Strasbourg July 6-7, 2011

What Causes the L-H Transition ?

Theoretical ideas:

- Shearing of edge turbulence by mean (steady) flows
- Shearing of edge turbulence by zonal (fluctuating) flows
- Stabilization of L-mode instability without flow shearing ?

Experimental evidence:

- Clear evidence of improved confinement due to biasing
- Clear evidence of turbulence reduction at L-H transition
- But transition 'trigger' is still an open issue (Wagner '07)

We don't have a good answer yet !

Outline of this Talk

- Latest fast camera movies of L-H transition on NSTX
- Edge zonal flow spectra derived from these movies
- Relationship between edge zonal flow and transition
- Comparison with preliminary result from Alcator C-Mod

Gas Puff Imaging (GPI) Diagnostic

- Optics view along B toward D_{α} emission from D_2 gas puff
- Oriented to view 2-D radial vs. poloidal plane at gas puff

Movie of L-H Transition in NSTX

- Viewing area ~ 25 cm radially x 25 cm poloidally
- This movie 285,000 frames/sec for ~ 3.5 msec

#135042 B=4.5 kG I=0.92 MA P=2.6 MW NBI

L-H transition @ 0.2455 sec

playback @ 50 µsec/sec

What Are We Seeing in GPI ?

- Seeing local emission of $D_{\alpha} \sim n_o f(n_e, T_e)$ within window where D_{α} is emitted in plasma edge, where $T_e \sim 10 100 \text{ eV}$
- Can measure 2-D *turbulence structure and motion* even if response of D_α is nonlinear (like contrast knob on a TV)
- Can not directly measure fluid (ion) flow or ExB flow, but measures turbulence flow velocity, as done previously*

* McKee et al, PoP '03 using BES on DIII-D Conway et al, PPCF '05 using Doppler reflectometry on AUG

L-H Transition NBI-Heated Case

- Viewing area ~ 25 cm radially x 31 cm poloidally
- This movie 400,000 frames/sec for ~ 2 msec

#138114 B=4.4 kG I=0.91 MA P=1.3 MW NBI

L-H transition @ 0.2530 sec

playback @ 40 µsec/sec

L-H Transition RF-Heated Case

- Viewing area ~ 25 cm radially x 31 cm poloidally
- This movie 400,000 frames/sec for ~ 2 msec

#141922 B=4.4 kG I=0.91 MA P=0.7 MW RF

L-H transition @ 0.2378 sec

playback @ 40 µsec/sec

L-H Transition in Ohmic Case

- Viewing area ~ 25 cm radially x 31 cm poloidally
- This movie 400,000 frames/sec for ~ 2 msec

#141751 B=3.6 kG I=0.80 MA Ohmic

L-H transition @ 0.2350 sec

playback @ 40 µsec/sec

Method to Calculate Zonal Flows

- for each pixel in each frame, make a short time series of the normalized GPI signal at that pixel over a ~ 40 µs interval
- find highest cross-correlation to this time series in pixels of the *next* frame and get 2-D velocity from the displacement
- average ~25 cm poloidally to get "zonal flow" velocity

Zonal Flow Spectrum in NBI Case

• See near-coherent peak at ~ 3 kHz preceding transition

Zonal Flow Spectrum in RF Case

- See broadband, intermittent spectrum preceding transition
- Dithering of H to L to H etc. in $D\alpha$ starts at 243 msec

Zonal Flow Spectrum in Ohmic Case

• See near-coherent peak at ~ 3 kHz preceding transition

Radial Profile of ZF- NBI Case

• L-H transition at 253 msec

Radial Profile of ZF - RF Case

• L-H transition at 238 msec

Radial Profile of ZF– OH Case

• L-H transition at 235 msec

Relationship of ZF and Transition ?

- Look at changes in V_{pol} and turbulence before L-H transition
- No obvious 'trigger event', e.g. at ρ ~ 0.4 cm in NBI transition*

*Zweben et al, POP '10 ; Sechrest et al, POP '11

Shear Flow Preceding Transition

- Evaluate S = $(dV_{pol}/dr)(L_r/L_p)\tau$ for 9 similar NBI transitions*
- No clear, systematic increase in S just before transition

*Zweben et al, POP '10

Summary of NSTX Results

- See clear reduction in edge turbulence at L-H transition
- Often see coherent zonal flow preceding L-H transition
- But sometimes see broadband, intermittent flow instead
- No clear increase in zonal flow or shear before transition

Causal relationship between zonal flow and L-H transition not yet clear !

Comparison with Alcator C-Mod

w/ J. Terry, D. Pace, T. Golfinopolos and the Alcator Group

- Coherent V_{pol} @ ~ 6.5 kHz before RF-induced L-H transition
- Good correlation of V_{pol} with Bdot (probably n=0) EGAM ?

Questions for Discussion ?

- How can we identify cause of L-H transition experimentally ?
- How can we establish quantitative connection with theory ?