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Turbulence in Laboratory Plasmas

Linear discharge Etude stellarator
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frequency frequency
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•  Most easily seen as low frequency (w < wci) random 
fluctuations in Langmuir probe signals (i.e. in dn 
and df), perhaps first reported by Bohm in 1940’s 

•  Apparent universality of spectrum noted by Chen in ‘65

100 kHz100 kHz



Characteristics of Lab Turbulence

In low b magnetized plasmas with ri < a:

•   w ≈ wdrift  << wci =>  near diamagnetic drift frequency

•   k^ri ≈ 0.3  =>  transverse scale set by ion gyroradius

•   kII << k^  =>  highly anisotropic with respect to B

•  dn/n ≈ 1/(k^ Ln)  =>  level reaches “mixing length” limit

•   |edf/kTe| ≈ |dn/n|  =>  seems dominantly electrostatic

•   dB^/B << dn/n  =>  small magnetic fluctuations 

=>   all consistent with “drift wave turbulence”



Drift Wave Model

•    Driven by pressure gradients in magnetized plasma

•    Destabilized by resistivity, rotation, parallel current, etc.

•    Linear theory very well developed since 60’s

from Chen, Plasma Physics (1984)



Lab Experiments vs. Drift Waves Model

 •  Early experiments on Q-machines identified coherent 
oscillations as drift waves based on linear theory 
(e.g. Hendel and Chu, Phys. Fluids ‘68)

•  But quantitative comparisons were difficult since waves 
were observed in their “saturated” steady-state 
=> need to compare with nonlinear theory

•  Comparisons of drift wave experiments with nonlinear 
theory are so far marginally successful at best
(e.g. Sen, Klinger, Tynan)

  =>  good quantitative agreement not yet obtained 



Tokamak
Tokamak = toroidal magnetic chamber (Russian acronym)



Turbulence in Tokamaks 

Motivations for studying this:

•   Drift wave turbulence probably causes the anomalous 
(i.e. non-collisional) plasma energy loss in tokamaks

•  Understanding this process might lead to the design of
a better MFE reactor

Tokamak parameters (R ≈ 1 m, R/a ≈ 3, B ≈ 1 Tesla):

Core:  T ≈ 1-10 keV Edge:  T ≈ 10-100 eV
n ≈ 1014 cm-3   n ≈ 1012 -1013 cm-3

b ≈ 1-100%   b ≈ 10-4 -10-5



Drift Wave Turbulence in Tokamaks

•  Measured turbulence looks similar to laboratory turbulence

-  limited measurements in hot core (e.g. scattering)

-  extensive probe measurements in edge (≤ 50 eV)

•  Nonlinear simulations show electrostatic turbulence with

kII << k^ driven by temperature or density gradients

3-D simulation of 
tokamak drift wave

core turbulence
(Candy and Waltz, ‘03)



Edge Turbulence in Tokamaks

•  Dominantly electrostatic with dn/n ≥ 0.1 but dB^/B ≈ 10-5

•  Similar broadband frequency spectrum in many devices

•  Responsible for particle and heat transport across edge

Radial profiles Frequency spectra

Wootton et al, Phys. Fl. B ‘90 Pedrosa et al, PRL ‘99



  NSTX
R = 85 cm
a = 68 cm
A = 1.25
I ≤ 1.5 MA
B ≤ 6 kG
5 MW NBI
6 MW ICRH
bT ≤ 35%

fast camera 10 µsec/frame
at 1000 frames/sec

Magnetic structure 
of edge plasma

Edge Density Turbulence Imaging



Gas Puff Imaging Diagnostic

•    Looks at He1(578.6 nm) from gas puff  I µ none f(ne,Te)
•    View along B field line to see 2-D structure ^ B

GPI
view

16x32 cm



Imaging of NSTX Edge Turbulence

CCD camera with
100,000 frames/sec

at 10 µsec/frame
for 28 frames/shot

[Zweben, Maqueda et al, sub. to NF ‘03]



Imaging of Alcator C-Mod Turbulence

Alcator C-Mod
R = 67 cm
a = 23 cm
A = 3
I ≤ 1.5 MA
B ≤ 80 kG
5 MW ICRH 
bT ≈ 1%

•  This plasma has 15 times the toroidal field of NSTX

[Zweben, Terry et al, Phys. Plasmas ‘02]



Anisotropy of C-Mod Edge Turbulence

local B

toroidal

•  View Da light emission horizontally from side of tokamak



•  Use 2-fluid equations in 3-D geometry

•  Assume initial conditions and evolve

radius[Rogers, Drake, and Zeiler, PRL ‘98]                     [ Hallatschek ‘02]

dB
dE
dn
dTi

dTe

dvII

Simulation of Edge Turbulence



Simulation vs. Experiment

•  Simulation reproduces 
   kpol spectrum fairly well,
   after taking into account
   the instrument resolution 

•  Also reproduces fluctuation 
    level, frequency spectrum, 
    and transport to within a 
    factor of x 2 or so

•  Similar level of agreement 
    obtained in a comparison
    with core turbulence 
       [Ross et al, PoP ‘02]

Terry et al, IAEA ‘02



Is there Similar Turbulence in Space ?

thanks for references:  T. Carter, F. Cheng, O. Grulke, G. Hammett, H. Ji, J. Johnson, 
           S. Kaye, R. Kulsrud, G. Morales, D. Newman, B. Rogers, M. Yamada

•  Look for low-b plasma fluctuations with:
-  kII << k^
-  k^ri ≈ 1  
-  edf/kTe ≈ dn/n
-  dB^/B ≈ b dn/n 

•  In: -  ionosphere
-  aurora
-  magnetosphere
-  solar coronal loops
-  interstellar space



Turbulence in “Equatorial Spread F”

[Kelley, Franz et al , JGR ‘02,  Steigies, Block et al , JGR ‘01]

•   See fluctuations in ionospheric ne with radar and rockets
at ≈ 300 km above equator
ne ≈ 1011  m-3  ; Te ≈ 0.1 eV ; B= 0.3 G

•  Kelley invokes collisional R-T
instability for large-scale 
structure (—n opposite g)

•  Considers drift waves for small-
scale structure based on
analogy with lab spectra (Prasad et al , PoP ‘94),
but concludes they are not unstable in the ionosphere



Turbulence in Aurora

Cluster, Wahlund et al, GRL ‘03
Stasiewicz et al, Sp. Sci. Rev. ‘00

•  Broadband dE and dB in aurora
seen by Cluster at 4-5 RE 
with k^rs ≈  k^le ≈ 1, b <<1

•  Identified as Dispersive Alfven 
Wave with kII << k^ and:
dE/dB ≈ VA [(1+k^rs) (1+k^le)]1/2

•  Tokamak edge has (e.g. TEXT):
dE/dB ≈ (3x103 V/m / 10-4 T) ≈  VA !

    =>  looks similar to tokamak ?

dE2

dB2

dE/dB



Magnetosheath and Magnetopause 

•   Low frequency turbulence in magnetosheath
       identified as Alfven/ion cyclotron or mirror 
       modes (Schwartz et al, Ann. Geophy. ‘96);
      

•   Similar turbulence in magnetopause either 
       local K-H, microtearing modes, or Alfven 
       waves transferred from magnetosheath 
       (Rezeau, Space Sci. Rev. ‘01)

•    Suggestion of gradient-drift instability (Hasegawa ‘85)    
       considered unlikely since turbulence seems to be 
       independent of local —n

dB (L,R,II)

n=108 m-3, T^ ≈ 0.2 keV, 
TII ≈ 0.1 keV,  b ≈ 0.67



Plasma Sheet and Magnetotail

•    Small-scale turbulence in plasma sheet has spikey 
electric fields attributed to kinetic Alfven waves 
(Wygant et al, JGR ‘00, ‘02)

n ≈ 0.3 cm-3 k^>> kII
T ≈ 2-4 keV k^ri ≈ 1
B ≈ 400 nT edf/kTe ≈ dn/n ≈ 0.1 - 1 
b ≈ 10-3  dB^/B ≈ 10-3 

   =>  looks similar to tokamak turbulence 

•    Substorm may be due to drift-ballooning or compressional-
           drift wave in magnetotail  (Miura Sp. Sci. Rev. ‘01, 

Horton JGR ‘03), but plasma there has b > 1



Solar Coronal Loops

•   Fine structure of loops seen

       by TRACE look like tokamak

       turbulence with k^>> kII  ≈  0

•    However, k^ ri ≈ 10-6  !

 L^ ≈ 106 m (?)

 ri  ≈  0.3 m (100 eV, 10 G)

=>  not like tokamaks !

•    But maybe this structure is the low-k^ limit of an “inverse

        cascade” due to instability at much smaller scales ?

http://vestige.lmsal.com/TRACE/Science/
ScientificResults/trace_cdrom/html/trace_images.html



Interstellar Medium (ISM)

Spangler, Sp. Sci. Rev. ‘00

•  Broad density fluctuation
   spectrum inferred by RF
   measurements, evidence
   for dB and anisotropy

•   Turbulence seems generated
     by large-scale MHD instability
     not small-scale drift-waves,
     but near k^ri ≈ 1 it can be

     modelled with “gyrokinetics”

      [Hammett et al, LMS Durham 2002]

S(k) ~ k-11/3



Summary of Lab vs. Space Turbulence

1-10-3

≈ 1 ?
0.1-1

10-6-101

0.01-1
dn/n

ISM
corona
pl..sheet
aurora
ionosph.
tokamak

1-10-31-10-310-9 - 11-10-3

   ≈ 1 ?≈ 1 ?≈ 10-6≈ 0.01 ?
≈ 10-30.1-1≈ 1≈ 10-3

≈ 0.1-10 ≈10-3

10-3-101

  ≈ 10-50.01-1  0.1-1  ≈ 0.01
dB^/Bedf/kTek^rikII/k^

  =>  some similarities between tokamak 
turbulence and space turbulence



Some Questions

•  Is the relationship of dE and dB in tokamaks Alfvenic ?

•  Does space turbulence depend on local gradients ^ B ?

•  Is the perpendicular size scale set mainly by ri or le ?

•  How much can we understand with nonlinear simulations ?

•  Can we make better lab simulations of space turbulence ?


