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Motivations

- Edge turbulence affects location of plasma-wall interaction

 Edge turbulence influences global tokamak confinement

- Cause of L-H transition is not yet completely understood
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NSTX GPIl images (L, L-H and H)
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National Spherical Torus Exp’t (NSTX)
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Graphite tiles (skinny)
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Gas Puff Imaging (GPI) Diagnostic

- Looks at D, line of neutral deuterium from a gas puff
- View = along B field line to see 2-D structure L B
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Location of GPI Light Emission
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NSTX Edge Parameters
n ~0.2-2 x1073 cm-3
T,~5-50 eV
L, ~2-5cm
L,~5m
ps ~0.2cm
e~ 107

~ similar to many tokamak

edge plasmas 6



GPI Fluctuation Data in NSTX

« PSI-5 camera records 300 frames at < 250,000 frames/sec
with 64x64 pixels / frame => 1.2 msec of data per shot

- Additional PM tube array digitized radial vs. poloidal array
at 500,000 Hz => 64 msec of data per shot
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Interpretation of GPI Fluctuations

* Line emission signal levels « n *T_P with 0.5 < a, f <2, so
measured signals are nonlinear functions of nand T,
[see Stotler et al, Cont. Plasma Phys. 44, 294, 2004]

- However, turbulence structure and motion are approximately
iIndependent of these nonlinearities and also nonlinearity
iIn camera intensifier (nonlinearity acts like “contrast knob”)
[see S.J. Zweben et al, Nucl. Fusion 44, 134, 2004]

=> Assume that structure and motion of GPI light fluctuations
represents structure and motion of the turbulence
(not necessarily the same as the fluid motion)



NSTX GPI images (L, L-H and H)



Images During L-mode

- color scale the same for all images in each shot

NSTX 112825 @ 385 ms O—olpha signal
Frame #1 time = 4 pa '

0.3945 0.39A5 0 3965
MHD signal

D,SQ-I& 0,39A5 0.3965
sec

movies at: http://www.pppl.gov/~szweben/ 10



Images During L-H Transition

L-H Transition
NSTX #113732
B=3.0 kG, I=780 kA, 2.0 MW NBI
<n>=2.2x1013 cm3
250,000 frames/sec
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Images During H-Mode

H-mode
NSTX #113745
B=3.0 kG, I=810 kA, 4.0 MW NBI
<n>=2.7x1013 cm-3
250,000 frames/sec
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Analysis of Structure and Motion

- Use simplest analysis via 2-point cross-correlation function
of fluctuations in GPI light signals vs. space and time:

C(AX, At) = 2 So(t) S, (t+Al)

» Correlation length from FWHM of C(Ax, 0) [= 1.6 X 0g4yssian]
- Velocity from time the delay of the peak in C(Ax, At) vs. Ax

- C(Ax, At) averages over space and time spectrum of signals
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2-D Structure from Chords

No significant changes from L- to H-mode (13 shots)

Maybe some increase in L, over ~ 30 msec before L-H
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2-D Structure from Images

- Evaluated near radial peak of GPI signhal ~ separatrix

 No statistically significant changes from L- to H-mode
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Poloidal Motion from Chords

 Poloidal motion generally in ion diamagnetic drift direction

 Poloidal flow more “frozen” in H-mode than L-mode (p ~ 0)
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Poloidal Motion from Images

 Average flow is generally in ion diamagnetic drift direction

* Vo gradient tend to be lower for H-mode than L-mode
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Comparison with C-Mod
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Images from Alcator C-Mod

H-mode L-mode

ELMfree H-mode L-mode
Shot # 1031121030 Shot # 1031204004

Terry et al, J. Nucl. Mater. ‘04 1°



NSTX vs. C-Mod (L-Mode)

NSTX * Alcator C-Mod**
Bodge 2-3 kG 40 kG
Nedge 0.2-2x10" cm= |2-20x10'° cm3
Te edge 5-50 eV 20-80 eV
Lol 5-9 cm 0.6-1.0 cm
L., 2-6 cm 0.7-1.5cm
Voo < 5 km/sec < 1 km/sec
A < 1-2 km/sec < 1.5 km/sec

* S.J. Zweben et al, Nucl. Fusion 44, p. 134 (2004)
** J.L. Terry et al, submitted to Fusion Science and Technology (005)



Initial comparisons with theory

- L-H transition
- blob model

- NLET model
- ESEL model
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Comparison with L-H Transition Model

- Transition doesn’t look like standard ExB flow shear picture
- little or no decrease in radial correlation length
- little or no increase in poloidal shear flow

* Yet flow shear is near the usual stabilization criterion for L-H
- VVoa(Liag/Lpo) = 30-40 kHz = 1/3,,,
Caveats:
- region causing transition may be outside GPI view
- poloidal velocities averaged over ~ 1 msec
- no actual simulation of L-H transition
- relatively small data set
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average total bicoherence

Bichoherence at L-H Transition

An increase in total bicoherence, suggesting an increase in
coupling between low frequency flows and high frequency
turbulence, was seen at L-H transition DIII-D (Moyer 2001)

The same analysis was applied to NSTX chord data, but no
significant increase in bicoherence was observed at L-H.
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Comparison with “Blob” Model

* Model for dynamics of isolated density structures in SOL

» Various regimes depending on blob size and collisionality

collisionality
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Comparison with NSTX Data

- Measure radial blob speed vs. time for one typical NSTX shot

- Compare with theory using some assumptions (Myra APS ‘05)
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NLET (nonlinear EM turbulence) Model

- Klaus Hallatschek compared his 3D NLET code (an offshoot
of Maryland’s DBM model) with C-Mod L-mode data

poloidal correlation length
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ESEL (edge SOL ES turbulence) Model

 Olaf Grulke compared the 2D interchange model of Garcia
and Naulin (Phys. Plasmas 12, 2005) to blob speed
distributions in C-Mod L-mode plasmas

ESEL

C-Mod

- track blob motion
with same method
in C-Mod and code
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- Open questions and directions
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Some Open Physics Questions

- What is the minimal physics needed to explain L-mode
edge turbulence ? (2D or 3D ? ES or EM ? fluid
or kinetic ? local or nonlocal ? radiation/neutrals ?)

- Do zonal flows affect L-mode edge turbulence ?

 What causes the H-mode ?

 What forms blobs ?

« Can edge/SOL transport be predicted for ITER ?

- How can edge turbulent transport be controlled ?
29



Some Experimental Directions

Shal 113732, 1 = O ps

Analyze higher-order spatial structure

Analyze 2-D velocity fields vs. time
- optical flow (Munsat APS ‘05)
- PCA (Stoltzfus-Dueck APS ‘05)

Try imaging at other locations
(X-point, inner wall, core ?)

Acquire image data for longer times
to see L-H and ELMs better

Compare results on different devices

(TJ-Il stellarator, JET, LAPD, etc) IIZITn':

—» 2 km/s

il=



Some Theoretical Directions ?

(Apparently a large code will be needed to explain this data)

Use 3D codes such as BOUT (Xu, Umanksy) and GEM
(Scott) to simulate NSTX and/or Alcator C-Mod

Understand physics of code results with analytic models
Develop more comprehensive edge codes (NYU, LLNL)
=> verify and validate codes with present data
=> use codes to develop possible control methods

=> test these control methods in existing machines
=> control L-H transition and SOL transport in ITER



